The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
Answer: <u>In a divergent plate boundary</u>, seafloor spreading taking place. It leads to the formation of oceans as new materials are added here along the mid-oceanic ridge. There occur volcanism and shallow-focus earthquakes.
<u>In a convergent plate boundary</u>, two plates collide to form high mountain belts and also volcanic eruptions take place. There occur long chains of volcanic as well as island arcs, in association with deep-focus earthquakes.
<u>In a transform plate boundary</u>, two plates slide past each other, conserving the plates. Shallow-focus earthquakes are generated here.
The earth has experienced various geological processes, such as weathering and erosion of rocks, earthquakes, volcanic eruptions, mass extinction events, plate tectonic movements and many more. These continuous processes have configured the present shape of the earth's surface.
For example, the breaking up of the supercontinent Pangea divided into Laurasia and Gondwanaland and subsequently formed the present scenario. This separation of continents has taken place due to the convection current that generates in the mantle.
Explanation:
Fe₂O₃ + CO → Fe₃O₄ + CO₂
Balancing the equation above, we can derive simple mathematical equations that are very easy to solve.
aFe₂O₃ + bCO → cFe₃O₄ + dCO₂
a,b,c and d are the coefficients needed to balance the equation above;
Conserving Fe; 2a = 3c
O: 3a + b = 4c + 2d
C: b = d
let a = 1;
c = 
Since b = d
3a + d = 4c + 2d
3a = 4c + 2d - d
3a = 4c + d
a = 1, c = 
3 = 4 x
+ d
d = 
b = 
multiplying a, b, c and d by 3:
a = 3 b = 1 c = 2 and d = 1
3Fe₂O₃ + CO → 2Fe₃O₄ + CO₂
Learn more:
Balanced equation brainly.com/question/2612756
#learnwithBrainly
For the first question, you got them right, for the two you left blank, initial(beginning) velocity: 2 m/s the final velocity is: 12 m/s