If we pull an object vertically upwards then we need to apply a force which is equal in the magnitude of the weight of the object

now when we pull the same object upwards along an inclined plane with angle then we require a force which will balance the component of weight along the inclined
so it is given as

so as if we compare the two forces we can say that since the value of sine is always less than 1 for an angle less than 90 degree
so in the 2nd case when we pull the object along the inclined plane it will require less effort
so correct answer is
<em>A. reduce effort</em>
The formula for the rotational kinetic energy is

where I is the moment of inertia. This is just mass times the square of the perpendicular distance to the axis of rotation. In other words, the radius of the propeller or this is equivalent to the length of the rod. ω is the angular velocity. We determine I and ω first.

ω = 573 rev/min * (2π rad/rev) * (1 min/60 s) = 60 rad/s
Then,

Power = voltage(V) * current(I)
= 120 * 0.5
Power = 60 watts
Answer:Three elements make up over 99.9 percent of the composition of dry air: these are nitrogen, oxygen, and argon.
Explanation:
Explanation:
First, find the velocity of the projectile needed to reach a height h when fired straight up.
Given:
Δy = h
v = 0
a = -g
Find: v₀
v² = v₀² + 2aΔy
(0)² = v₀² + 2(-g)(h)
v₀ = √(2gh)
Now find the height reached if the projectile is launched at a 45° angle.
Given:
v₀ = √(2gh) sin 45° = √(2gh) / √2 = √(gh)
v = 0
a = -g
Find: Δy
v² = v₀² + 2aΔy
(0)² = √(gh)² + 2(-g)Δy
2gΔy = gh
Δy = h/2