Answer:
just click any of the buttons
Answer:
Higher frequency
Explanation:
We can imagine a chemical bond between two atoms as if it were two balls connected by a spring.
According to Hooke's Law, the stretching frequency f is

where µ is the reduced mass of the system

The strength of the bond is analogous to k, the force constant of the spring. Then,

Thus, the stronger the bond, the greater the frequency of vibration.
<span>Energy = Mass * heat capacity * temperature change so,
</span>The energy added is 435 J and the temperature has to increase since the energy is added.
<span>435 J = 10.0 g * 0.89 J/gC * temperature change </span>
<span>Temperature change = 48.9 C </span>
<span>The initial temperature is 25.0 C, the final temperature is 25.0 C + 48.9 C = 73.9 C.</span>