First we have to find Ka1 and Ka2
pKa1 = - log Ka1 so Ka1 = 0.059
pKa2 = - log Ka2 so Ka2 = 6.46 x 10⁻⁵
Looking at the values of equilibrium constants we can see that the first one is really big compared to second one. so, the pH will be affected mainly by the first ionization of the acid.
Oxalic acid is H₂C₂O₄
H₂C₂O₄ ⇄ H⁺ + HC₂O₄⁻
0.0356 M 0 0
0.0356 - x x x
Ka1 =
![\frac{[H^+][HC2O4^-]}{[H2C2O4]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5BHC2O4%5E-%5D%7D%7B%5BH2C2O4%5D%7D%20)
= x² / 0.0356 - x
x = 0.025 M
pH = - log [H⁺] = - log (0.025) = 1.6
Answer:
B. because there is two equations just like commutative property in math its the same thingish
Explanation:
Answer: 51.9961 g/mol, don't know if it helps :)
Explanation:
<span>When a large number of atoms of the same isotope are observed they will have a statistically consistent half life.
</span>An unstable nucleus contains a near excessive number of RNA chemical can spontaneously break apart into one or more nuclei all with a lighter state. #believe
This is a redox reaction, meaning reduction-oxidation reaction. This represents the reaction in one side of the electrode in an electrolysis set-up. First, we find the oxidation number of Cu in CuSO4:
(ox. # of Cu)+ ox.# of S + 4(ox.# of oxygen) = 0
(ox. # of Cu) + (6) + 4(-2) = 0
ox. # of Cu = 2+
CuSO4 ---> Cu + SO42-
Cu2+ + SO42- ----> Cu + SO42-
Cu2+ -----> Cu + 2e- (net ionic reaction)
The stoichiometric equation would be 2 electrons per mole Copper. Copper has a molar mass of <span>63.5 g/mol. Then, it would only need 2 electrons.
</span>