- The potential difference between two locations in an electric circuit is measured using a voltmeter.
- If the electricity passes through the voltmeter it shows deflection.
<h3>What is the purpose of a voltmeter?</h3>
- A voltage meter, usually referred to as a voltmeter, is a device that measures the voltage, or potential difference, between two points in an electrical or electronic circuit.
- volts is the unit of voltmeter(volts, millivolts, kilovolts)
<h3>What is the explanation for the link between current and voltage?</h3>
- Ohm's law states that the voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperatures remain constant.
<h3>What is ohm's law in circuit?</h3>
- V = IR, where V is voltage, I is current, and R is resistance, is known as Ohm's Law.
- If you know the voltage of the battery in the circuit and how much resistance is in the circuit, you may use Ohm's Law to identify properties of a circuit, such as how much current is flowing through it.
To learn more about current and voltage visit:
brainly.com/question/10254698
#SPJ4
It is most likely true that there was a lower concentration of salt in the water than in the cells because when blood cells are put in a hypotonic solution such as pure water, the little to no salt concentration in the water causes the cells to swell and burst. This would occur because the water would try to dilute the solution inside of the blood cell and which would, therefore, cause it to burst. Hope this helps!
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.
Answer:
a little
Explanation:
First of all, it's not how you spell "tyres", it is tires.
Second of all, you already know the Mass so what you need to find out now is contact the road. You Know that your number and letter are squared so that would turn into 6m x 2.4. Then you do the math do continue on to finish it. Have a great day!! Good luck with the answer!!
Acceleration (magnitude anyway) = (change in speed) / (time for the change) .
Change in speed = (10 - 30) = -20 m/s
Time for the change = 4.0sec
Magnitude of acceleration = -20/4 = <em>-5 m/s² </em>