Answer:
Igneous rock
Explanation:
Igneous rocks are formed through the cooling and solidification of magma. It undergoes changes in temperature and pressure that causes it to cool, solidify, and crystallize.
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³
Answer:
option A
Explanation:
the correct answer is option A
The given blanks in the question will be filled with Absolute and relative receptively.
time is absolute means the numerical representation of time example 12:00 pm is absolute time.
Measurement of distance is relative. A relative distance is one which is represented with the reference of some other place, it is not an exact value.
Answer:
P = 22 watts
Explanation:
Given that,
The output power of the generator = 2 a
The output potential difference = 11 V
We need to find the output power of the generator. The formula for the output power is given by :

So, the output power of the generator is equal to 22 Watts.
The force on the tool is entirely in the negative-y direction.
So no work is done during any moves in the x-direction.
The work will be completely defined by
(Force) x (distance in the y-direction),
and it won't matter what route the tool follows to get anywhere.
Only the initial and final y-coordinates matter.
We know that F = - 2.85 y². (I have no idea what that ' j ' is doing there.)
Remember that 'F' is pointing down.
From y=0 to y=2.40 is a distance of 2.40 upward.
Sadly, since the force is not linear over the distance, I don't think
we can use the usual formula for Work = (force) x (distance).
I think instead we'll need to integrate the force over the distance,
and I can't wait to see whether I still know how to do that.
Work = integral of (F·dy) evaluated from 0 to 2.40
= integral of (-2.85 y² dy) evaluated from 0 to 2.40
= (-2.85) · integral of (y² dy) evaluated from 0 to 2.40 .
Now, integral of (y² dy) = 1/3 y³ .
Evaluated from 0 to 2.40 , it's (1/3 · 2.40³) - (1/3 · 0³)
= 1/3 · 13.824 = 4.608 .
And the work = (-2.85) · the integral
= (-2.85) · (4.608)
= - 13.133 .
-- There are no units in the question (except for that mysterious ' j ' after the 'F',
which totally doesn't make any sense at all).
If the ' F ' is newtons and the 2.40 is meters, then the -13.133 is joules.
-- The work done by the force is negative, because the force points
DOWN but we lifted the tool UP to 2.40. Somebody had to provide
13.133 of positive work to lift the tool up against the force, and the force
itself did 13.133 of negative work to 'allow' the tool to move up.
-- It doesn't matter whether the tool goes there along the line x=y , or
by some other route. WHATEVER the route is, the work done by ' F '
is going to total up to be -13.133 joules at the end of the day.
As I hinted earlier, the last time I actually studied integration was in 1972,
and I haven't really used it too much since then. But that's my answer
and I'm stickin to it. If I'm wrong, then I'm wrong, and I hope somebody
will show me where I'm wrong.