Answer:
What is the radius of the table tennis ball?
⇒ 2.1 cm
What is the radius of the golf ball?
2.0 cm
Explanation:
divide the radius and round it to the nearest 10th place..... but hope that help ;)
According to the Work-Energy Theorem, the work done on an object is equal to the change in the kinetic energy of the object:

Since the car ends with a kinetic energy of 0J (because it stops), then the work needed to stop the car is equal to the initial kinetic energy of the car:

Replace m=1100kg and v=112km/h. Write the speed in m/s. Remember that 1m/s = 3.6km/h:

Therefore, the answer is: 532,346 J.
Answer:
The angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Explanation:
Given that,
Potential difference, V = 53 mV
Length of the wire, l = 12 cm = 0.12 m
Magnetic field, B = 0.27 T
Speed of the wire, v = 5 m/s
Due to its motion, an emf is induced in the wire. It is given by :

Here,
is the angle between magnetic field and the wire’s velocity

So, the angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Answer:
1.503 J
Explanation:
Work done in stretching a spring = 1/2ke²
W = 1/2ke²........................... Equation 1
Where W = work done, k = spring constant, e = extension.
Given: k = 26 N/m, e = (0.22+0.12), = 0.34 m.
Substitute into equation 1
W = 1/2(26)(0.34²)
W = 13(0.1156)
W = 1.503 J.
Hence the work done to stretch it an additional 0.12 m = 1.503 J
The position of the centre of gravity of an object affects its stability. The lower the centre of gravity (G) is, the more stable the object. The higher it is the more likely the object is to topple over if it is pushed. Racing cars have really low centres of gravity so that they can corner rapidly without turning over.
Increasing the area of the base will also increase the stability of an object, the bigger the area the more stable the object. Rugby players will stand with their feet well apart if they are standing and expect to be tackled.