Answer:
Results from method B is more reliable than method A.
Explanation:
The two method that are used for the analysis produced different results. The first method that is method A gives higher value of the iodine content than the method B.
When
was added to water, method A showed an increased in the iodine content and it increases with the increase in the amount of
.
Where as in the method B, there is no change in the results. Therefore the measurements provided by the method A shows an inference of
ion.
The measurement of the iodine content is affected by the presence of the ion
in water.
Since in method B there is no change in measurement, it is independent of the presence
ion in water.
As higher iodine content is given by method A, so
ion must be present in original water that must be interfering the measurement. Hence, method B is more reliable.
For a given system, vapor pressure can be defined as the pressure exerted by the vapor phase in equilibrium with the condensed phase.
In this case, as water sits in an open beaker it tends to evaporate thereby forming water vapor. This vapor phase then exerts a pressure over the liquid water, which is termed as the vapor pressure of water at that temperature and pressure. As water continues to evaporate, more and more molecules escape into the vapor phase which thereby increases the vapor pressure.
Ans: The vapor pressure of water increases as the water evaporates.
The answer is 12.4.I think its correct answer.
Here's how you would solve it. The process should be the same for the others.
Answer: The increasing wavelength of colors:
Red > Green > Blue
Explanation:
Wavelength: This is the property of wave which includes the distance between two consecutive crests or trough. This is denoted by the Greek letter Lambda and it is found by dividing the velocity of the wave with its frequency.
Wavelength of colours are
Violet: 400 - 420 nm
Indigo: 420 - 440 nm
Blue: 440 - 490 nm
Green: 490 - 570 nm
Yellow: 570 - 585 nm
Orange: 585 - 620 nm
Red: 620 - 780 nm