Answer:
Explanation:
Initial momentum is 1.5e6(3) = 4.5e6 kg•m/s
An impulse results in a change of momentum
The tug applied impulse is 12000(10) = 120000 N•s or 0.12e6 kg•m/s
The remaining momentum is 4.5e6 - 0.12e6 = 4.38e6 kg•m/s
The barge velocity is now 4.38e6 / 1.5e6 = 2.92 m/s
The tug applies 0.012e6 N•s of impulse each second.
The initial barge momentum will be zero in
t = 4.5e6 / 0.012e6 = 375 s or 6 minutes and 15 seconds
To stop the barge in one minute(60 s), the tug would have to apply
4.5e6 / 60 = 75000 N•s /s or 75 000 N
Answer:
a) θ = 2500 radians
b) α = 200 rad/s²
Explanation:
Using equations of motion,
θ = (w - w₀)t/2
θ = angle turned through = ?
w = final angular velocity = 1420 rad/s
w₀ = initial angular velocity = 420
t = time taken = 5s
θ = (1420 - 420) × 5/2 = 2500 rads
Again,
w = w₀ + αt
α = angular accelaration = ?
1420 = 420 + 5α
α = 1000/5 = 200 rad/s²
I don’t even know I’m so dumb.
The forklift does no work on the box at all.
And work doesn't have a direction.