Answer:
uh yeah I think so technically
D should be the correct answer. isotopes are atoms that have the same atomic number (number of protons) but different atomic masses (number of protons and neutrons). isotopes also have the same number of electrons since atoms need to have equal numbers of protons and electrons to not be considered ions. Since the number of protons determines the chemical properties of the atom, we can say that all isotopes have the same chemical properties due to the fact that all isotopes have the same atomic number.
I hope this helps. Let me know in the comments if anything is unclear.
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>
We know that when calculating percent yield, we use the equation:

Since the quantities that we are given in the question are equal, we can just directly divide them to find percent yield:

So now we know that the percent yield of the synthesis is 87.27%.
Answer:
Kp = 0.81666
Explanation:
Pressure of PCl₅ = 0.500 atm
Considering the ICE table for the equilibrium as:
PCl₅ (g) ⇔ PCl₃ (g) + Cl₂ (g)
t = o 0.500
t = eq -x x x
---------------------------------------------
--------------------------
Moles at eq: 0.500-x x x
Given the pressure of PCl₅ at equilibrium = 0.150 atm
Thus, 0.500 - x = 0.150
x = 0.350 atm
The expression for the equilibrium constant is:
So,
x = 0.350 atm
Thus,
<u>Thus, Kp = 0.81666</u>