Answer:
- Nitrogen has four pairs of electrons: 3 bonds and 1 lone pair in the valence shell;
- Electrons repel one another based on the VSEPR theory;
- Nitrogen has a total of 7 protons (its atomic number is 7) in its nucleus.
Explanation:
The shape and the bond orientation of molecules and ions are both explained by the valences shell electron pair repulsion theory (VSEPR).
Ammonia,
, is a molecule which contains three N-H bonds, as well as one lone pair on nitrogen. According to the VSEPR theory, molecules try to acquire a shape which would minimize the repulsion exhibited by the electron clouds present, that is, between the bonding (shared in a bond) and non-bonding (lone pair) electrons.
In VSEPR, our main step is to calculate the steric number, this is the sum of the number of bonds (ignoring the multiplicity of any bond) and the lone pairs on a central atom. In ammonia, we have 3 bonds and 1 lone pair, totaling to a steric number of 4. A steric number of 4 without any lone pairs on a central atom and just bonds would yield a tetrahedral shape with bond angles of
.
Now, in this case, since we have a lone pair instead of a bond, it is repelling stronger decreasing the bond angles to about
.
The greater the number of lone pairs, the lower the angle becomes.
To summarize:
- Nitrogen has four pairs of electrons: 3 bonds and 1 lone pair in the valence shell;
- Electrons repel one another based on the VSEPR theory;
- Nitrogen has a total of 7 protons (its atomic number is 7) in its nucleus.
Answer:
However, various hydrogen isotopes, such as H-2, have one proton and one neutron; H-3 has one proton and two neutrons, etc. The sum of the protons and neutrons in an atom's nucleus is its atomic mass. Thus, the atomic mass of the H-2 isotope is two, the atomic mass of the H-3 isotope is three, and so forth.
Explanation:
1.66 M is the concentration of the chemist's working solution.
<h3>What is molarity?</h3>
Molarity (M) is the amount of a substance in a certain volume of solution. Molarity is defined as the moles of a solute per litres of a solution. Molarity is also known as the molar concentration of a solution.
In this case, we have a solution of Zn(NO₃)₂.
The chemist wants to prepare a dilute solution of this reactant.
The stock solution of the nitrate has a concentration of 4.93 M, and he wants to prepare 620 mL of a more dilute concentration of the same solution. He adds 210 mL of the stock and completes it with water until it reaches 620 mL.
We want to know the concentration of this diluted solution.
As we are working with the same solution, we can assume that the moles of the stock solution will be conserved in the diluted solution so:
=
(1)
and we also know that:
n = M x 
If we replace this expression in (1) we have:
x
=
x 
Where 1, would be the stock solution and 2, the solution we want to prepare.
So, we already know the concentration and volume used of the stock solution and the desired volume of the diluted one, therefore, all we have to do is replace the given data in (2) and solve for the concentration which is
:
4.93 x 210 = 620 x
= 1.66 M
This is the concentration of the solution prepared.
Learn more about molarity here:
brainly.com/question/19517011
#SPJ1
Answer:
11.25moles of CO2
Explanation:
First, let us generate a balanced equation for the reaction of propane to produce CO2. This reaction called Combustion. It is a reaction in which propane burns in air (O2) to produce CO2 and H20. The equation is given below:
C3H8 + 5O2 —> 3CO2 + 4H2O
From the equation,
1mole of C3H8 produced 3moles of CO2.
Therefore, 3.750 moles of C3H8 will produce = 3.750 x 3 = 11.25moles of CO2
Answer: The correct option is (c). The total pressure doubles.
Solution:
Initially, only 4 moles of oxygen gas were present in the flask.
(
) ( according to Dalton's law of partial pressure)
....(1)
= Total pressure when only oxygen gas was present.
Final total pressure when 4 moles of helium gas were added:

partial pressure of oxygen in the mixture :
Since, the number of moles of oxygen remains the same, the partial pressure of oxygen will also remain the same in the mixture.

= Total pressure of the mixture.
from (1)

On rearranging, we get:

The new total pressure will be twice of initial total pressure.