Answer:
The partial pressure of argon in the jar is 0.944 kilopascal.
Explanation:
Step 1: Data given
Volume of the jar of air = 25.0 L
Number of moles argon = 0.0104 moles
Temperature = 273 K
Step 2: Calculate the pressure of argon with the ideal gas law
p*V = nRT
p = (nRT)/V
⇒ with n = the number of moles of argon = 0.0104 moles
⇒ with R = the gas constant = 0.0821 L*atm/mol*K
⇒ with T = the temperature = 273 K
⇒ with V = the volume of the jar = 25.0 L
p = (0.0104 * 0.0821 * 273)/25.0
p = 0.00932 atm
1 atm =101.3 kPa
0.00932 atm = 101.3 * 0.00932 = 0.944 kPa
The partial pressure of argon in the jar is 0.944 kilopascal.
Answer:
5.65 is the pH.
Explanation:
I am assuming that you are asking for confirmation on your answer. The answer is 5.65.
You would do:
[pOH] = -log[OH-]
= -log[4.5*10^-9]
equals about 8.3468
To find pH your would subtract the pOH from 14.
14-8.3468 = 5.65 << Rounded to match the answer choices.
Although the moon's distance from earth varies each month because of its eccentric orbit, the moon's mean distance from Earth is nonetheless increasing at the rate of about 3.8 centimeters (1.5 inches) per year
Answer: a) 
b) 
c) 
d) 
Explanation:
General representation of an element is given as:_Z^A\textrm{X}
where,
Z represents Atomic number
A represents Mass number
X represents the symbol of an element
Mass number is defined as the sum of number of protons and neutrons that are present in an atom.
Mass number = Number of protons + Number of neutrons
In an atom, when neutrons or protons are lost or gains, it directly affects the mass number of an atom.
Atomic number is defined as the number of protons or number of electrons that are present in an atom.
It is characteristic of a particular element.
Atomic number = Number of electrons = Number of proton
a) Z 74, A 186: 
b) Z 80, A 201: 
c) Z 34, A 76: 
d) Z 94, A 239.: 