1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
3 years ago
6

What is the velocity of an object that travels 150 meters in 10 seconds?

Physics
1 answer:
natta225 [31]3 years ago
7 0

Answer:

15 m/s

Explanation:

150m ÷ 10s = 15m/s

You might be interested in
Refer to the first diagram. What is the weight of the person hanging on the end of the seesaw in Newtons?
irina1246 [14]

Due to equilibrium of moments:

1) The weight of the person hanging on the left is 250 N

2) The 400 N person is 3 m from the fulcrum

3) The weight of the board is 200 N

Explanation:

1)

To solve the problem, we use the principle of equilibrium of moments.

In fact, for the seesaw to be in equilibrium, the total clockwise moment must be equal to the total anticlockwise moment.

The moment of a force is defined as:

M=Fd

where

F is the magnitude of the force

d is the perpendicular distance of the force from the fulcrum

In the first diagram:

- The clockwise moment is due to the person on the right is

M_c = W_2 d_2

where W_2 = 500 N is the weight of the person and d_2 = 2 m is its distance from the fulcrum

- The anticlockwise moment due to the person hanging on the left is

M_a = W_1 d_1

where W_1 is his weight and d_1 = 4 m is the distance from the fulcrum

Since the seesaw is in equilibrium,

M_c = M_a

So we can find the weight of the person on the left:

W_1 d_1 = W_2 d_2\\W_1 = \frac{W_2 d_2}{d_1}=\frac{(500)(2)}{4}=250 N

2)

Again, for the seesaw to be in equilibrium, the total clockwise moment must be equal to the total anticlockwise moment.

- The clockwise moment due to the person on the right is

M_c = W_2 d_2

where W_2 = 400 N is the weight of the person and d_2 is its distance from the fulcrum

- The anticlockwise moment due to the person on the left is

M_a = W_1 d_1

where W_1 = 300 N is his weight and d_1 = 4 m is the distance from the fulcrum.

Since the seesaw is in equilibrium,

M_c = M_a

So we can find the distance of the person on the right:

W_1 d_1 = W_2 d_2\\d_2 = \frac{W_1 d_1}{W_2}=\frac{(300)(4)}{400}=3 m

3)

As before, for the seesaw to be in equilibrium, the total clockwise moment must be equal to the total anticlockwise moment.

- The clockwise moment around the fulcrum this time is due to the weight of the seesaw:

M_c = W_2 d_2

where W_2 is the weight of the seesaw and d_2 = 3 m is the distance of its centre of mass from the fulcrum

- The anticlockwise moment due to the person on the left is

M_a = W_1 d_1

where W_1 = 600 N is his weight and d_1 = 1 m is the distance from the fulcrum

Since the seesaw is in equilibrium,

M_c = M_a

So we can find the weight of the seesaw:

W_1 d_1 = W_2 d_2\\W_2 =\frac{W_1 d_1}{d_2}= \frac{(600)(1)}{3}=200 N

#LearnwithBrainly

8 0
2 years ago
A space expedition discovers a planetary system consisting of a massive star and several spherical planets. The planets all have
Juliette [100K]

Answer:

T/√8

Explanation:

From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.

For planet A, period = T and radius = 2R.

For planet B, period = T' and radius = R.

So, T²/R³ = k

So, T²/(2R)³ = T'²/R³

T'² = T²R³/(2R)³

T'² = T²/8

T' = T/√8

So, the number of hours it takes Planet B to complete one revolution around the star is T/√8

7 0
2 years ago
The most frequent compulsion that is exhibited in obsessive-compulsive disorder is
Vinil7 [7]
The most frequent compulsion that is exhibited in obsessive compulsive disorder is cleansing 
6 0
2 years ago
8. How is the crystal size different for extrusive and intrusive igneous rocks?
eduard
<span>Igneous rocks which form by the crystallization of magma at a depth within the Earth are called intrusive rocks. Intrusive rocks are characterized by large crystal sizes, i.e., their visual appearance shows individual crystals interlocked together to form the rock mass.  hope that helped</span>
7 0
2 years ago
A coin is dropped in a 15.0 m deep well.
labwork [276]

Answer:

t = 1.75

t = 0.04

Explanation:

a)

For part 1 we want to use a kenamatic equation with constant acceleration:

X = 1/2*a*t^2

isolate time

t = sqrt(2X / a)

Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2

t = sqrt(2*15m / 9.8m/s^2)

t = 1.75 s

b)

The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:

v = d / t

isolate time

t = d / v

plug in known variables

t = 15m / 340m/s

t = 0.04 s

7 0
2 years ago
Other questions:
  • A bus slams on its breaks and goes from 30 km/hr to 15km/hr in 4 seconds. What is its acceleration?
    7·1 answer
  • How can magnet pick wooden fish
    11·2 answers
  • What is special about a DC circuit?
    6·2 answers
  • Is net force the same thing as gravity
    11·1 answer
  • If a cell is dying because it lacks an inorganic substance that is important for nutrition, what does it need?
    10·1 answer
  • What does the atomic number of an atom tell us?
    5·2 answers
  • A kickoff sends a football with an initial velocity of 25 m/s at an angle of 50
    15·1 answer
  • A painter sets up a uniform plank so that he can paint a high wall. The plank is 2 m long and weighs 400 N. The two supports hol
    12·1 answer
  • What type of energy is stored in a pendulum at the top of its arc?
    7·2 answers
  • A bullet of mass 10g is fired from a gun. The bullet takes 0.003s to move through its barrel and leaves it with a velocity of 30
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!