the greater the <u>mass</u> of an object the more force is needed to cause acceleration
Answer:
60 kg m/s
Explanation:
Let
be the acceleration of the object.
As the acceleration of the object is constant, so

Given that applied force, F=6.00 N,
From Newton's second law, we have
,
[from equation (i)]


[given that time, t=10 s and F=6 N]

Here mv is the final momentum of the object and mu is the initial momentum of the object.
So, the change in the momentum of the object is mv-mu.
Hence, the change in the momentum of the object is 60 kg m/s.
Your being on the moon has no effect on the moon's
gravitational field strength, or on the Earth's for that
matter.
However, YOU notice a change on YOU when YOU move
from one to the other, because of the effect of the gravitational
field strength on you and your internal organs.
If you could stand on the moon, you would experience an incredible
sense of lightness, since the forces of attraction between the moon
and anything else are only 16% as great as the same forces are on
Earth.