The Volume of the ice block is 5376.344 cm^3.
The density of a material is define as the mass per unit volume.
Here, the density of ice given is 0.93 g/cm^3
Mass of the ice block given is 5 kg or 5000 g
Now calculate the volume of the ice block
density=mass/volume
0.93=5000/Volume
Volume =5376.344 cm^3
Therefore the volume of ice block is 5376.344 cm^3
Answer:
Work: 4.0 kJ, heat: 4.25 kJ
Explanation:
For a gas transformation at constant pressure, the work done by the gas is given by

where in this case we have:
is the pressure
is the initial volume
is the final volume
Substituting,

The 1st law of thermodynamics also states that

where
is the change in internal energy of the gas
Q is the heat absorbed by the gas
Here we know that

Therefore we can re-arrange the equation to find the heat absorbed by the gas:

Electromagnetic radiation is an energy that is known as light. so electromagnetic radiation will have the same speed as the speed of light which is 3 x 10^8 m/s. so the distance it travel at 55 x 10^-6 s is:
D = ( 3 x 10^8 m/s ) ( 55 x 10^-6 s )
D = 16500 m
Atomic mass is the mass of an atom, particle, or molecule. The atomic mass is determined by the number of protons and neutrons in the atom. For example, Oxygen has 8 protons (as seen by the atomic number) and 8 neutrons which gives oxygen an atomic mass of 16.
Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s