Answer: That's air resistance.
Explanation: Well, air resistance is an upward force exerted on falling objects.
( I hope this helped <3 )
Answer:
the formula of mechanical advantage is
MA = load / effort
VR = effort distance / load distance
hope it is helpful to you
-- In combination with 610 Hz, the beat frequency is 4 Hz.
So the unknown frequency is either (610+4) = 614 Hz
or else (610-4) = 606 Hz.
In combination with 605 Hz, the beat frequency will be
either (614-605) = 9 Hz or else (606-605) = 1 Hz.
-- In actuality, when combined with the 605 Hz, the beat
frequency is too high to count accurately. That must be
the 9 Hz rather than the 1 Hz.
So the unknown is (605+9) = 614 Hz.
Answer:
1.98 atm
Explanation:
Given that:
Temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28 + 273.15) K = 301.15 K
n = 1
V = 0.500 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
P × 0.500 L = 1 ×0.0821 L atm/ K mol × 301.15 K
⇒P (ideal) = 49.45 atm
Using Van der Waal's equation
R = 0.0821 L atm/ K mol
Where, a and b are constants.
For Ar, given that:
So, a = 1.345 atm L² / mol²
b = 0.03219 L / mol
So,


⇒P (real) = 47.47 atm
Difference in pressure = 49.45 atm - 47.47 atm = 1.98 atm
·The acceleration of gravity is proportional to
1 / (the square of the distance from the center) .
When we're on the surface, we're 1 radius from the center of the Earth,
and the acceleration of gravity is 9.8 m/s² .
The boy's weight = (mass) · (gravity) = (50kg) · (9.8 m/s²)
= 490 newtons .
At the distance of 5 radii from the center (4 radii altitude from the surface),
the acceleration of gravity is
(9.8 m/s²) · (1/5)² = 0.39 m/s² .
The boy's weight is (mass) · (gravity) = (50kg) · (0.39 m/s²)
= 19.6 newtons .
Just as we expected, his weight at that distance is
(19.6 / 490) = 0.04 = 1/25 = 1/5² of his weight on the surface.