Objects in the fountain appear to be somewhere but isnt
Answer:
K3PO4
Explanation:
Recall that colligative properties depends on the number of particles present. The greater the number of particles present, the greater the degree of colligative properties of the solution. Let us look at each option individually;
SrCr2O7-------> Sr^2+ + Cr2O7^2- ( 2 particles)
C4H11N (not ionic in nature hence it can not dissociate into ions)
K3PO4-------> 3K^+ + PO4^3- (4 particles)
Rb2CO3-------> 2Rb^+ + CO3^2- (3 particles)
Hence K3PO4 has the greatest number of particles and will display the greatest colligative effect.
Answer:
Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation.
Explanation:
The benzene ring in itself does not easily undergo electrophilic substitution reaction. Some groups activate or deactivate the benzene ring towards electrophilic substitution reactions.
-NO2 ia a highly deactivating substituent therefore, Friedel-Crafts alkylation of nitrobenzene does not take place under any conditions.
This reaction scheme is therefore flawed because Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation.
Answer:
It is better to do chemistry
Explanation:
So that you will learn more of chemicals
Answer:
The configuration of the atom would be 2-8-2.
Explanation:
Any atom of an element combines with other element to complete its octet and become stable.
The electron configuration of the given atom is 2-8-6. That means the atom has 6 electrons in its outermost shell. To become stable the atom should have 8 electrons in its outermost shell. The given atom has 6 electrons so it either lose 6 electrons or gain 2 electrons to complete its octet.
But we know the atom having 5,6,7 electrons in its outermost shell they do not lose, they gain either 3 or 2 or 1 electrons to complete its octet.
So we say that atom with the electron configuration 2-8-6 bond with the atom having electron configuration 2-8-2.