The equivalent capacitance (
) of an electrical circuit containing four capacitors which are connected in parallel is equal to: A. 21 F.
<h3>The types of circuit.</h3>
Basically, the components of an electrical circuit can be connected or arranged in two forms and these are;
<h3>What is a parallel circuit?</h3>
A parallel circuit can be defined as an electrical circuit with the same potential difference (voltage) across its terminals. This ultimately implies that, the equivalent capacitance (
) of two (2) capacitors which are connected in parallel is equal to the sum of the individual (each) capacitances.
Mathematically, the equivalent capacitance (
) of an electrical circuit containing four capacitors which are connected in parallel is given by this formula:
Ceq = C₁ + C₂ + C₃ + C₄
Substituting the given parameters into the formula, we have;
Ceq = 10 F + 3 F + 7 F + 1 F
Equivalent capacitance, Ceq = 21 F.
Read more equivalent capacitance here: brainly.com/question/27548736
#SPJ1
60,000 meters. no explanation
Bigger is the correct answer. the faster an igneous rock cools the bigger the bigger the crystal size will be
The change in internal energy of the system is +30 J
Explanation:
We can solve this problem by using the first law of thermodynamics, which states that the change in internal energy of a system is given by the equation:

where
is the change in internal energy
Q is the heat absorbed by the system (positive if it is absorbed, negative if it is released)
W is the work done by the system (positive if it is done by the system, negative if it is done by the surroundings on the system)
Therefore, in this problem, we have
(heat released by the system)
(work done on the system)
Therefore, the change in internal energy is

Learn more about thermodynamics:
brainly.com/question/4759369
brainly.com/question/3063912
brainly.com/question/3564634
#LearnwithBrainly