The electric force between the two particles are calculated through the equation,
F = kQ₁Q₂ / d²
where F is the force, k is a constant called Coulomb's law constant, Q₁ and Q₂ are the charges, and d is the distance. This equation is called the Coulomb's law.
It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance.
The answer to this item is therefore letter A.
For an ideal transformer power loss is assumed to be zero
i.e. the power in primary coil due to input voltage must be equal to power in secondary coil due to output voltage
this can be written in form of equation

here we know that


![i_1 = 10 A{/tex]now we will use above equation[tex]140*3.5 = 10 * V_1](https://tex.z-dn.net/?f=i_1%20%3D%2010%20A%7B%2Ftex%5D%3C%2Fp%3E%3Cp%3Enow%20we%20will%20use%20above%20equation%3C%2Fp%3E%3Cp%3E%5Btex%5D140%2A3.5%20%3D%2010%20%2A%20V_1)

So primary coil voltage is 49 Volts
Answer:
A). A few of the positive particles aimed at a gold foil seemed to bounce back off of the thin metallic foil.
Explanation:
Scientists decided to change the model of the atom when they discovered new evidence that showed 'few of the positive particles aimed at a gold foil seemed to bounce back off of the thin metallic foil.' On this ground, <u>Rutherford concluded that atom is mostly made up of empty space and thus, he proposed a nucleus model of atom in which the atom comprises of the tiny and positively charged nucleus is surrounded by electrons with a negative charge</u>. Thus, <u>option A</u> is the correct answer.
Answer:
Speed of the alpha particle is
Explanation:
We have given charge on alpha particle 
Mass of the alpha particle 
Potential difference 
We have to find the speed of the alpha particle
From energy conservation we know that


