Answer:c
Explanation:
Given
Alice launches with horizontal velocity 
Tom simply drops straight down from the edge
Time taken by both the person is same as they have same initial vertical velocity i.e. zero so the time taken to reach the ground is zero.
Although Alice will travel more horizontal distance compared to Tom.
Thus option c is correct
Answer:
<h3>The answer is 45 J</h3>
Explanation:
The work done by an object can be found by using the formula
<h3>workdone = force × distance</h3>
From the question
distance = 3 meters
force = 15 newtons
We have
workdone = 15 × 3
We have the final answer as
<h3>45 J</h3>
Hope this helps you
Exercise is the answer hope i helped you
Answer:
The bullet's initial speed is 243.21 m/s.
Explanation:
Given that,
Mass of the bullet, 
Mass of the pendulum, 
The center of mass of the pendulum rises a vertical distance of 10 cm.
We need to find the bullet's initial speed if it is assumed that the bullet remains embedded in the pendulum. Let it is v. In this case, the energy of the system remains conserved. The kinetic energy of the bullet gets converted to potential energy for the whole system. So,
V is the speed of the bullet and pendulum at the time of collision
Now using conservation of momentum as :
Put the value of V from equation (1) in above equation as :

So, the bullet's initial speed is 243.21 m/s.
r₁ = distance of the point from the source = 43 km = 43000 m
I₁ = intensity of earthquake wave at distance "r₁" = 2.5 x 10⁶ W/m²
r₂ = distance of the point from the source = 1.5 km = 1500 m
I₂ = intensity of earthquake wave at distance "r₂" = ?
we know that , for a constant power , the intensity of wave is inversely proportional to the distance from the source .
I α 1/r² where I = intensity of wave , r = distance from source
hence we can write
I₁/I₂ = r₂²/r₁²
inserting the values
(2.5 x 10⁶) /I₂ = (1500/43000)²
I₂ = 2.1 x 10⁹ W/m²