Answer:
100 N
Explanation:
Given that,
Two forces whose resultant is 100newton are perpendicular to each other.
If one of them makes an angle of 60newton with the resultant.

and

The magnitude of force,

or
F = 100 N
So, the magnitude of force is 100 N.
Answer:
10.93 rad/s
Explanation:
If we treat the student as a point mass, her moment of inertia at the rim is

So the system moment of inertia when she's at the rim is:

Similarly, we can calculate the system moment of inertia when she's at 0.456 m from the center

We can apply the law of angular momentum conservation to calculate the post angular speed when she's 0.456m from the center:


Answer:
Explanation:
This is going to sound like an absurd answer, but sometimes physics can be a little strange.
This answer is weird because of the definition of displacement. It means the distance from the starting point to the ending point, disregarding what happened in between. The point is that the astronaut is at the starting point of his orbit. By definition the starting and ending points are the same. His displacement is 0.
So the answer is you have the greater displacement when you walked one way to school. The starting point and the ending point are different. You have gone further.
However just to make things a little nasty, when you walk home again, your displacement will be the same as the astronaut's -- 0 meters because you will be right back where you started from.
The displacement of thoughts, feelings, fears, wishes, and conflicts from past relationships onto new relationships is called transference.
The three main parts of an atom are protons, neutrons<span>, and </span>electrons<span>. </span>Protons<span> - have a positive charge, located in the </span>nucleus<span>, </span>Protons<span> and </span>neutrons<span> have nearly the same mass while </span>electrons<span> are much less massive. </span>Neutrons<span>- Have a negative charge, located in the </span><span>nucleus</span>