Answer:
P₂ = 2.88 atm
Explanation:
Given data:
Initial volume of gas = 1.8 L
Final volume = 750 mL
Initial pressure = 17.5 Psi
Final pressure = ?
Solution:
We will convert the units first:
Initial pressure = 17.5 /14.696 = 1.2 atm
Final volume = 750 mL ×1L/1000L = 0.75 L
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
1.2 atm × 1.8 L = P₂ ×0.75 L
P₂ = 2.16 atm. L/ 0.75 L
P₂ = 2.88 atm
Answer:
12.8 g of
must be withdrawn from tank
Explanation:
Let's assume
gas inside tank behaves ideally.
According to ideal gas equation- 
where P is pressure of
, V is volume of
, n is number of moles of
, R is gas constant and T is temperature in kelvin scale.
We can also write, 
Here V, T and R are constants.
So,
ratio will also be constant before and after removal of
from tank
Hence, 
Here,
and 
So, 
So, moles of
must be withdrawn = (0.66 - 0.26) mol = 0.40 mol
Molar mass of
= 32 g/mol
So, mass of
must be withdrawn = 
Answer:
80.8 g
Explanation:
First, let's write a balanced equation of this reaction
MgO + 2HNO₃ → Mg(NO₃)₂ + H₂O
Now let's convert grams to moles
We gotta find the weight of MgO
24 + 16 = 40 g/mol
12/40 = 0.3 moles of MgO
We can use this to find out how much Magnesium Nitrate will be formed
0.3 x 1 MgO / 1 Mg(NO₃)₂ = 0.3 moles of Magnesium Nitrate formed
Convert moles to grams
Find the weight of Mg(NO₃)₂ but don't forget that 2 subscript acts as a multiplier of whatever is inside that parenthesis.
24 + 14 x 2 + 16 x 3 x 2 = 148 g/mol
148 x 0.3 = 80.8 g
Answer:
massive flooding occurs in may at this location
Explanation:
i did the quiz idk if its right though :/
Answer:
If the cap is left off, some of the dissolved CO2 can escape as gas from the bottle, making the pop go flat faster (less dissolved CO2 in pop). If the cap is placed tightly, the gaseous CO2 cannot readily escape the bottle thus your pop won't go flat
Explanation:
If the cap is left off, some of the dissolved CO2 can escape as gas from the bottle, making the pop go flat faster. If the cap is placed tightly, the gaseous CO2 cannot readily escape the bottle thus your pop won't go flat.
Just some fun related concept:
A similar concept comes into play for the reason behind why pop tastes better in fridge then just keeping at normal temperature. This is because gases tend to have high solubility at cold temperatures thus CO2 is more readily dissolved in fridge than outside room temperature which is why it tastes great!