Atoms have no electric charge because the protons and electrons "cancel out" each others charges. Neutrons have no charge. What is the atomic number of an element? The atomic number is the number of protons in the atom's nucleus.
Hope this helps have a great day :)
Blue litmus paper turns red in the presence of an acid. Therefore, it can be assumed that the substance in the beaker is an acid.
Acids have a pH level of less than 7. Consequently, it can be assumed that the substance has a pH level less than 7.
The answer is: the distance between two nuclei is 2.35×10⁻¹⁰ m.
r(Na⁺) = 1.16×10⁻¹⁰ m; radius of sodium cation.
r(F⁻) = 1.9×10⁻¹⁰ m; radius of fluoride anion.
d(NaF) = r(Na⁺) + r(F⁻).
d(NaF) = 1.16×10⁻¹⁰ m + 1.9×10⁻¹⁰ m.
d(NaF) = 2.35×10⁻¹⁰ m; distance between two nuclei.
The sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice.
Answer- 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
Given - Number of moles of Al(NO3)3 - 4 moles
Number of moles of NaCl - 9 moles
Find - Maximum amount of AlCl3 produced during the reaction.
Solution - The complete reaction is - Al(NO3)3 + 3NaCl --> 3NaNO3 + AlCl3
To find the maximum amount of AlCl3 produced during the reaction, we need to find the limiting reagent.
Mole ratio Al(NO3)3 - 4/1 - 4
Mole ratio NaCl - 9/3 - 3
Thus, NaCl is the limiting reagent in the reaction.
Now, 3 moles of NaCl produces 1 mole of AlCl3
9 moles of NaCl will produce - 1/3*9 - 3 moles.
Weight of AlCl3 - 3*133.34 - 400 grams
Thus, 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
Below are the choices:
A The mercury will change temperature at a much faster rate under the same heating conditions.
<span>B The two metal samples will change temperature at about the same rate. </span>
<span>C The gold would float if placed in the mercury. </span>
<span>D The gold would sink to the bottom if placed in the mercury.
</span>
<span>a = false, it will take 0.031 cal to raise 1g Au 1degree while it will take 0.033 cal to raise 1g Hg 1 degree so, although Au will heat up faster, it will not be discernably faster so...
b = true
c = false, Au density > Hg
d = true</span>