1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
8

An observer (O) spots a plane (P) taking off from a local airport and flying at a 29° angle horizontal to her line of sight and

located directly above a tower (T). The observer also notices a bird (B) circling directly above her. If the distance from the plane (P) to the tower (T) is 6,000 ft., how far is the bird (B) from the plane (P)?
A diagram is shown with two parallel lines cut by a transversal. One angle is marked 29 degrees, one side is marked 6000 and another side is marked x.

6857 feet

10,824 feet

12,371feet

22,063 feet
Physics
1 answer:
nikklg [1K]3 years ago
7 0
B. <span>10,824 feet
is the right answer
tan 26 = 6000/x
x = 10824 ft</span>
You might be interested in
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
4 years ago
A 234.0 g piece of lead is heated to 86.0oC and then dropped into a calorimeter containing 611.0 g of water that initally is at
Vaselesa [24]

Answer:24.70 ^{\circ}C

Explanation:

Given

mass of lead piece m_l=234 gm\approx 0.234 kg

mass of water in calorimeter m_w=611 gm\approx 0.611 kg

Initial temperature of water T_w=24^{\circ}C

Initial temperature of lead piece T_l=24^{\circ}C

we know heat capacity of lead and water are 125.604 J/kg-k and 4.184 kJ/kg-k respectively

Let us take T ^{\circ}C be the final temperature of the system

Conserving energy

heat lost by lead=heat gained by water

m_lc_l(T_l-T)=m_wc_w(T-T_w)

0.234\times 125.604(86-T)=0.611\times 4.184\times 1000(T-24)

86-T=\frac{0.611\times 4.184\times 1000}{29.391}(T-24)

86-T=86.97T-2087.49

T=\frac{2173.491}{87.97}=24.70^{\circ}C

3 0
3 years ago
A 0.45-kilogram football traveling at a speed of 22 meters per second is caught by an 84-kilogram stationary receiver. if the fo
Troyanec [42]

Impulse = Change in momentum.  
The ball was moving with a momentum of 0.45 * 22 = 9.9  
The ball comes to rest in the receivers arm; this means the ball's final velocity = 0. So mv2 = 0.45 * 0  
The magnitude of the impact is just the change in momentum. 9.9 - (0.45 * 0) = 9.9
3 0
3 years ago
Explain two scenarios where a large truck can have the same momentum as a small car.
KengaRu [80]

The momentum, p, of any object having mass m and the velocity v is

p=mv\cdots(i)

Let M_L and M_S be the masses of the large truck and the car respectively, and V_L and V_S be the velocities of the large truck and the car respectively.

So, by using equation (i),

the momentum of the large truck = M_LV_L

and the momentum of the small car = M_SV_S.

If the large truck has the same momentum as a small car, then the condition is

M_LV_L=M_SV_S\cdots(ii)

The equation (ii) can be rearranged as

\frac {M_L}{M_S}=\frac {V_S}{V_L} \; or \; \frac{M_L}{V_S}=\frac{M_S}{V_L}

So, the first scenario:

\frac {M_L}{M_S}=\frac {V_S}{V_L}

\Rhghtarrow M_L:M_S=V_S:V_L

So, to have the same momentum, the ratio of mass of truck to the mass of the car must be equal to the ratio of velocity of the car to the velocity of the truck.

The other scenario:

\frac{M_L}{V_S}=\frac{M_S}{V_L}

\Rhghtarrow M_L:V_S= M_S:V_L

So, to have the same momentum, the ratio of mass of truck to the velocity of the car must be equal to the ratio of mass of the car to the velocity of the truck.

5 0
3 years ago
Which form of energy moves spontaneously from hot objects to cold objects?
Mumz [18]

Answer:

heat

Explanation:

google ( ╹▽╹ )✧◝(⁰▿⁰)◜✧

6 0
3 years ago
Other questions:
  • The takeoff speed for an airbus a320 jetliner is 82 m/s . velocity data measured during takeoff are as follows: t(s) vx(m/s) 0 0
    9·1 answer
  • How much power is used if a force of 54 newtons is used to pull a wagon a distance of 10 meters in 6 seconds?
    11·2 answers
  • show answer No Attempt Treated as a projectile, what is the maximum range, in meters, obtainable by a person if he or she has a
    11·2 answers
  • An avant-garde composer wants to use the Doppler effect in his new opera. As the soprano sings, he wants a large bat to fly towa
    14·1 answer
  • Where would the barycenter of these two bodies be located given their masses?
    8·1 answer
  • A newly discovered planet has a radius twice as large as earth's and a mass five times as large. What is the free-fall accelerat
    7·1 answer
  • Proverbs from taiwanese<br><br>water can help a boat float, but it can also sink it​
    11·2 answers
  • A motorcycle is moving at a constant speed of 40 km/h. How long does it take the motorcycle to travel a distance of 10 km
    14·1 answer
  • How can scientist best confirm and validate the result of an experiment so they can publish their findings?
    14·2 answers
  • David is investigating the properties of soil using the sample shown.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!