Answer:
Tetrahedral electron geometry and trigonal pyramidal molecular geometry.
Explanation:
The Lewis structure is shown in Figure 1.
The central N atom has three bonding pairs and one lone pair, for <em>four electron groups</em>.
VSEPR theory predicts a tetrahedral electron geometry with bond angles of 109.5°.
We do not count the lone pair in determining the molecular shape.
The molecular geometry is trigonal pyramidal (see Figure 2).
Your question isn't quite clear, but if you're wondering if a chemical is polar or non-polar, you simply draw a VSEPR sketch and draw arrows where the bonds are. Only draw arrows between atoms, NOT between an atom and a lone pair of electrons. The arrow should point to the most electronegative atom (you should be given an electronegativity scale). Afterwards, you add up the arrows as vectors, and look at the sum of the vectors. If the sum is zero (CH4 is a good example), the chemical is non-polar. If the sum is a vector, the chemical is polar (H2O, or water, is polar).
<span>The constant bombardment of gas molecules against the inside walls of a container produces Pressure.
Explanation:
Pressure is defined as Force per unit Area.
P = F / A
In case of gases, the gas molecules have high Kinetic Energy and they move with high velocity. This cause them to strike against the inside wall of the container. Pressure is directly proportional to temperature. Increase in temperature cause to increase the Kinetic Energy of molecules, Hence, the rate of collisions increases resulting in increasing the pressure.</span>
Law, since "It is supported by a great deal of evidence. A theory is almost like an educated guess but a little more complex. Someone can have a theory and try to predict the outcome, which could be how they want it to go or how they don't want it to go. With a law, the scientist is basically certain of the outcome due to the evidence that was provided when the law was created.
You have to start listing from the bottom :
3. Secondary Consumers
2. Primary Consumers
1. Producer