1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gogolik [260]
3 years ago
7

Generally, final design results are rounded to or fixed to three digits because the given data cannot justify a greater display.

In addition, prefixes should be selected so as to limit number strings to no more than four digits to the left of the decimal point. Using these rules, as well as those for the choice of prefixes, solve the following relations:
Captionless Image

Engineering
1 answer:
creativ13 [48]3 years ago
8 0

Answer:

(a) 1.90 kpsi

(b) 0.40 kpsi

(c) 0.61 in.

(d) 0.009

(a) 8 MPa

(b) 1.30 cm⁴

(c) 2.04 cm⁴

(d) 62.2 MPa

Explanation:

(a) σ = M/Z, where M = 1770 lbf·in and Z = 0.943 in³.

1770/0.943 = 1876.988 lbf/in² = 1.90 kpsi

(b) σ = F/A, where F = 9440 lbf and A = 23.8 in².

9440 /23.8 = 396.639 lbf/in² = 0.4 kpsi

(c) y = Fl³/(3EI)

F = 270 lbf

l = 31.5 in.

E = 30 Mpsi

I = 0.154 in.⁴

y = 270×31.5³/(3×30×10⁶×0.154) = 0.61 in.

(d) θ = Tl/(GJ), where T = 9740 lbf·in, l = 9.85 in. G = 11.3 Mpsi, and d = 1.00 in.

J = π·d⁴/32 = π/32 in.⁴

∴ θ = 9740  × 9.85 /(11.3 × 10⁶× π/32) = 0.009

(a) σ = F/wt, where F = 1 kN, w = 25 mm, and t = 5 mm

∴ σ = 1000/(0.025 × 0.005) = 8 MPa

(b) I = bh³/12, where b = 10 mm and h = 25 mm.

10×25³/12 = 1.30 cm⁴

(c) I = π·d⁴/64 where d = 25.4 mm.

I = π × 25.4⁴/64 = 2.04 cm⁴

(d) τ = 16×T/(π×d³), where T = 25 N·m, and d = 12.7 mm.

16×25/(π×0.0127³) = 62.2 MPa.

You might be interested in
A steel bar is 150 mm square and has a hot-rolled finish. It will be used in a fully reversed bending application. Sut for the s
Xelga [282]

Answer:

See explanation

Explanation:

Given The bar is square and has a hot-rolled finish. The loading is fully reversed bending.

Tensile Strength

Sut: 600 MPa

Maximum temperature

Tmax: 500 °C

Bar side dimension

b: 150 mm

Alternating stress

σa: 100 MPa

Reliability

R: 0.999 Note 1.

Assumptions Infinite life is required and is obtainable since this ductile steel will have an endurance limit. A reliability factor of 99.9% will be used.

Solution See Excel file Ex06-01.xls.

1 Since no endurance-limit or fatigue strength information is given, we will estimate S'e based on the ultimate tensile strength using equation 6.5a.

S'e: 300 MPa = 0.5 * Sut

2 The loading is bending so the load factor from equation 6.7a is

Cload: 1

3 The part size is greater than the test specimen and the part is not round, so an equivalent diameter based on its 95% stressed area must be determined and used to find the size factor. For a rectangular section in nonrotating bending, the A95 area is defined in Figure 6-25c and the equivalent diameter is found from equation 6.7d

A95: 1125 mm2 = 0.05 * b * b Note 2.

dequiv: 121.2 mm = SQRT(A95val / 0.0766)

and the size factor is found for this equivalent diameter from equation 6.7b, to be

Csize: 0.747 = 1.189 * dequiv^-0.097

4 The surface factor is found from equation 6.7e and the data in Table 6-3 for the specified hot-rolled finish.

Table 6-3 constants

A: 57.7

b: -0.718 Note 3.

Csurf: 0.584 = Acoeff * Sut^bCoeff

5 The temperature factor is found from equation 6.7f :

Ctemp: 0.710 = 1 - 0.0058 * (Tmax - 450)

6 The reliability factor is taken from Table 6-4 for R = 0.999 and is

Creliab: 0.753

7 The corrected endurance limit Se can now be calculated from equation 6.6:

Se: 69.94 MPa = Cload * Csize * Csurf * Ctemp *

Creliab * Sprme

Let

Se: 70 MPa

8 To create the S-N diagram, we also need a value for the estimated strength Sm at 103 cycles based on equation 6.9 for bending loading.

Sm: 540 MPa = 0.9 * Sut

9 The estimated S-N diagram is shown in Figure 6-34 with the above values of Sm and Se. The expressions of the two lines are found from equations 6.10a through 6.10c assuming that Se begins at 106 cycles.

b: -0.2958 Note 4.

a: 4165.7

Plotting Sn as a function of N from equation 6.10a

N Sn (MPa)

1000 540 =aa*B73^bb

2000 440

4000 358

8000 292

16000 238

32000 194

64000 158

128000 129

256000 105

512000 85

1000000 70

FIGURE 6-34. S-N Diagram and Alternating Stress Line Showing Failure Point

10 The number of cycles of life for any alternating stress level can now be found from equation 6.10a by replacing σa for Sn.

At N = 103 cycles,

Sn3: 540 MPa = aa * 1000^bb

At N = 106 cycles,

Sn6: 70 MPa = aa * 1000000^bb

The figure above shows the intersection of the alternating stress line (σa = 100 MPa) with the failure line at N = 3.0 x 105 cycles.

8 0
3 years ago
How would you expect an increase in the austenite grain size to affect the hardenability of a steel alloy? Why?
seraphim [82]

Answer:

The hardenability increases with increasing austenite grain size, because the grain boundary area is decreasing. This means that the sites for the nucleation of ferrite and pearlite are being reduced in number, with the result that these transformations are slowed down, and the hardenability is therefore increased.

3 0
3 years ago
The base class Pet has attributes name and age. The derived class Dog inherits attributes from the base class Pet class and incl
Nonamiya [84]

Answer:

Explanation:

class Pet:

   def __init__(self):

       self.name = ''

       self.age = 0

   def print_info(self):

       print('Pet Information:')

       print('   Name:', self.name)

       print('   Age:', self.age)

class Dog(Pet):

   def __init__(self):

       Pet.__init__(self)

       self.breed = ''

def main():

   my_pet = Pet()

   my_dog = Dog()

   pet_name = input()

   pet_age = int(input())

   dog_name = input()

   dog_age = int(input())

   dog_breed = input()

   my_pet.name = pet_name

   my_pet.age = pet_age

   my_pet.print_info()

   my_dog.name = dog_name

   my_dog.age = dog_age

   my_dog.breed = dog_breed

   my_dog.print_info()

   print('   Breed:', my_dog.breed)

main()

3 0
3 years ago
A structural component in the shape of a flat plate 25.0 mm thick is to be fabricated from a metal alloy for which the yield str
balandron [24]

Answer:

The critical length of surface flaw = 6.176 mm

Explanation:

Given data-

Plane strain fracture toughness Kc = 29.6 MPa-m1/2

Yield Strength = 545 MPa

Design stress. =0.3 × yield strength

= 0.3 × 545

= 163.5 MPa

Dimensionless parameter. Y = 1.3

The critical length of surface flaw is given by

= 1/pi.(Plane strain fracture toughness /Dimensionless parameter× Design Stress)^2

Now putting values in above equation we get,

= 1/3.14( 29.6 / 1.3 × 163.5)^2

=6.176 × 10^-3 m

=6.176 mm

5 0
3 years ago
Read 2 more answers
EMB agar is a medium used in the identification and isolation of pathogenic bacteria. It contains digested meat proteins as a so
Ilya [14]

Answer:

A selective medium, a differential medium, and a complex medium.

Explanation:

A selective media is a microbiological media which only support the growth of a particular specie or types of species of microorganisms,this media acts in such a way to inhibit or hinder the growth of other microorganisms.

Differential media are media that acts to Identifying particular strains of microorganisms of similar species.

Complex media are media used for the growth of microorganisms this which contains complex or a wide range of nutrients with chemical composition which may be difficult to determine.

5 0
3 years ago
Other questions:
  • A piece of corroded steel plate was found in a submerged ocean vessel. It was estimated that the original area of the plate was
    12·1 answer
  • How does it produce a 3D component?
    8·1 answer
  • Which scientist was famous for his laws on gravity?
    10·2 answers
  • The Accenture team is involved in helping a client in the transformation journey using Cloud computing. How is myNav beneficial
    6·1 answer
  • I will mark brainliest.
    6·2 answers
  • Merchandise without an expiration date like electronics, tools and home goods typically have a longer
    15·1 answer
  • Subject : SCIENCE
    12·1 answer
  • All of the following are examples of capital intensive industries EXCEPT: *
    15·2 answers
  • What is another term for the notes that a reader can add to text in a word-processing document?
    11·2 answers
  • 1)What are the three previous manufacturing revolutions Mr. Scalabre mentions? When did these take place?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!