Answer:
<em>v</em><em> </em>= T/(2R)
Explanation:
Given
R = radius
T = strength
From Biot - Savart Law
d<em>v</em> = (T/4π)* (d<em>l</em> x <em>r</em>)/r³
Velocity induced at center
<em>v </em>= ∫ (T/4π)* (d<em>l</em> x <em>r</em>)/r³
⇒ <em>v </em>= ∫ (T/4π)* (d<em>l</em> x <em>R</em>)/R³ (<em>k</em>) <em>k</em><em>:</em> unit vector perpendicular to plane of loop
⇒ <em>v </em>= (T/4π)(1/R²) ∫ dl
If l ∈ (0, 2πR)
⇒ <em>v </em>= (T/4π)(1/R²)(2πR) (<em>k</em>) ⇒ <em>v </em>= T/(2R) (<em>k</em>)
Answer:
The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.
Explanation:
160 - 120 = 40
120 = 100
40 = X
40 x 100 / 120 = X
4000 / 120 = X
33.333 = X
120 = 100
160 = X
160 x 100 /120 = X
16000 / 120 = X
133.333 = X
Answer:
S = 5.7209 M
Explanation:
Given data:
B = 20.1 m
conductivity ( K ) = 14.9 m/day
Storativity ( s ) = 0.0051
1 gpm = 5.451 m^3/day
calculate the Transmissibility ( T ) = K * B
= 14.9 * 20.1 = 299.5 m^2/day
Note :
t = 1
U = ( r^2* S ) / (4*T*<em> t </em>)
= ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4
Applying the thesis method
W(u) = -0.5772 - In(U)
= 7.9
next we calculate the pumping rate from well ( Q ) in m^3/day
= 500 * 5.451 m^3 /day
= 2725.5 m^3 /day
Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping
S = 
where : Q = 2725.5
T = 299.5
W(u) = 7.9
substitute the given values into equation above
S = 5.7209 M