Answer:
Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.
Explanation:
Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow. You can also see that
represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:
- Wall Thickness. More thickness, more thermal resistance.
- Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
- Cross-section Area. More cross-section area, less thermal resistance.
A expression to define the thermal resistance for the wall is as follows:
, where l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.
Answer:
V=L(di/dt) where i is current, V=0.208
Explanation:
using expression iL(t)=5e-2t+3te-2t-2 and L=0.05H(50/1000)
V=0.05*d(5e-2t+3te-2t-2)/dt
since there is no power of e, I'll assume the power to be 1
V=0.05*(-2+3e-2)
at t=0.25
V=0.15e-0.2
V=0.208
Answer:
591.3
Explanation:
99.19 + (1.85 × 266) = 591.29
rounded = 591.3
Explanation:
Superheater has two types of parts which are:
- The primary super-heater
- The secondary super-heater
Primary super-heater is first heater which is passed by the steam after steam comes out of steam drum.
After steam is heated on super primary heater, then the steam is passed on secondary super-heater so to be heated again. Thus, on secondary super-heater, the steam formed is hottest steam among others.
Steam from secondary super-heater which becomes the superheated steam, flow to rotate the High-Pressure Turbine.
Answer:
Answer for the question:
Given a 8-bit ripple carry adder and the following four input scenarios: (i) A4 + 1F, (ii) AB+55, (iii) CA+34, (iv) 6D+29. a) Under which input scenario can adder generate correct output with the minimal delay? b) Under which input scenario can adder generate correct output with the maximum delay?
Is given in the attachment.
Explanation: