1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
3 years ago
10

A 200-gr (7000 gr = 1 lb) bullet goes from rest to 3300 ft/s in 0.0011 s. Determine the magnitude of the impulse imparted to the

bullet during the given time interval. In addition, determine the magnitude of the average force acting on the bullet.
Engineering
1 answer:
OlgaM077 [116]3 years ago
3 0

Answer:

The force acting on the bullet F = 84000 \frac{lb ft}{s^{2} }

The value of impulse on the bullet in the given time interval P = 92.4 \frac{lb ft}{sec}

Explanation:

Mass of the bullet ( m ) = 200 gr = 0.028 lb

Initial velocity ( U ) = 0

Final Velocity ( V ) = 3300 \frac{ft}{sec}

Force acting on the bullet F = \frac{m ( V - U )}{t}

⇒ F = \frac{ 0.028 ( 3300 - 0 )}{0.0011}

⇒ F = 84000 \frac{lb ft}{s^{2} }

This is the force acting on the bullet.

Magnitude of the impulse imparted on the bullet  P = F dt  -------- (1)

Put the value of F & dt in above equation we get,

P = 84000 × 0.0011

P = 92.4 \frac{lb ft}{sec}

This is the value of impulse on the bullet in the given time interval.

You might be interested in
Please help me with this, picture.
Alenkasestr [34]
Maybe try 086 degrees
3 0
2 years ago
A steady stream (1000 kg/hr) of air flows through a compressor, entering at (300 K, 0.1 MPa) and leaving at (425 K, 1 MPa). The
AleksandrR [38]

Answer:

The work furnished by the compressor is 69.77kJ/s

The minimum work required for the state to change is 55.26kW

Explanation:

The explanation to these solution is on the first, second , third and fourth uploaded image respectively

8 0
2 years ago
Question 40 and the next Question 41
TEA [102]

Answer:

there's no photo? but I'm willing to help

8 0
2 years ago
In your first job with a large U.S based steel company, you have been assigned to a team tasked with developing a new low carbon
nignag [31]

Answer:

Option A

Explanation:

3 0
3 years ago
Read 2 more answers
A steam power plant operates on an ideal reheat- regenerative Rankine cycle and has a net power output of 80 MW. Steam enters th
trasher [3.6K]

Answer:

flow(m) = 54.45 kg/s

thermal efficiency u = 44.48%

Explanation:

Given:

- P_1 = P_8 = 10 KPa

- P_2 = P_3 = P_6 = P_7 = 800 KPa

- P_4 = P_5 = 10,000 KPa

- T_5 = 550 C

- T_7 = 500 C

- Power Output P = 80 MW

Find:

-  The mass flow rate of steam through the boiler

-  The thermal efficiency of the cycle.

Solution:

State 1:

P_1 = 10 KPa , saturated liquid

h_1 = 192 KJ/kg

v_1 = 0.00101 m^3 / kg

State 2:

P_2 = 800 KPa , constant volume process work done:

h_2 = h_1 + v_1 * ( P_2 - P_1)

h_2 = 192 + 0.00101*(790) = 192.80 KJ/kg

State 3:

P_3 = 800 KPa , saturated liquid

h_3 = 721 KJ/kg

v_3 = 0.00111 m^3 / kg

State 4:

P_4 = 10,000 KPa , constant volume process work done:

h_4 = h_3 + v_3 * ( P_4 - P_3)

h_4 = 721 + 0.00111*(9200) = 731.21 KJ/kg

State 5:

P_5 = 10,000 KPa , T_5 = 550 C

h_5 = 3500 KJ/kg

s_5 = 6.760 KJ/kgK

State 6:

P_6 = 800 KPa , s_5 = s_6 = 6.760 KJ/kgK

h_6 = 2810 KJ/kg

State 7:

P_7 = 800 KPa , T_7 = 500 C

h_7 = 3480 KJ/kg

s_7 = 7.870 KJ/kgK

State 8:

P_8 = 10 KPa , s_8 = s_7 = 7.870 KJ/kgK

h_8 = 2490 KJ/kg

- Fraction of steam y = flow(m_6 / m_3).

- Use energy balance of steam bleed and cold feed-water:

                                        E_6 + E_2 = E_3

               flow(m_6)*h_6 + flow(m_2)*h_3 = flow(m_3)*h_3

                                    y*h_6 + (1-y)*h_3 = h_3

                                  y*2810 + (1-y)*192.8 = 721

Compute y:                          y = 0.2018

- Heat produced by the boiler q_b:

                             q_b = h_5 - h_4 +(1-y)*(h_7 - h_8)

                    q_b = 3500 -731.21 + ( 1 - 0.2018)*(3480 - 2810)

Compute q_b:               q_b = 3303.58 KJ/ kg

-Heat dissipated by the condenser q_c:

                                       q_c = (1-y)*(h_8 - h_1)

                                 q_c= ( 1 + 0.2018)*(2810 - 192)

Compute q_c:               q_c = 1834.26 KJ/ kg

- Net power output w_net:

                                     w_net = q_b - q_c

                                w_net = 3303.58 - 1834.26

                                    w_net = 1469.32 KJ/kg

- Given out put P = 80,000 KW

                                     flow(m) = P / w_net

compute flow(m)          flow(m) = 80,000 /1469.32 = 54.45 kg/s

- Thermal efficiency u:

                                     u = 1 - (q_c / q_b)

                                     u = 1 - (1834.26/3303.58)

                                     u = 44.48 %

5 0
3 years ago
Other questions:
  • Technician A says that when using an impact wrench to remove a bolt from the front of an engine's crankshaft, the crankshaft mus
    15·1 answer
  • A waste treatment pond is 50m long and 25m wide, and has an average depth of 2m.The density of the waste is 75.3 lbm/ft3. Calcul
    12·1 answer
  • Which statement concerning symbols used on plans is true?
    10·1 answer
  • What word is typically written at the bottom of a cover letter to indicate an
    12·2 answers
  • The temperature controller for a clothes dryer consists of a bimetallic switch mounted on an electrical heater attached to a wal
    12·1 answer
  • A segment of a roadway has a free flow speed of 45 mph and a jam density of 25 ft per vehicle. Determine the maximum flow and at
    12·1 answer
  • You need to lower your lift onto the mechanical load-holding devices to provide structural support before working under the lift
    12·1 answer
  • Technician A says a 50/50 mix of antifreeze and
    8·1 answer
  • It is important to follow correct procedures when running electrical cables next to data cables in order to protect against whic
    6·1 answer
  • Suppose a manager of a certain mining company wants to determine the weekly food expenditure of the company’s employees. if ther
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!