There’s many terms to it
1 : to keep in a safe or sound state He conserved his inheritance. especially : to avoid wasteful or destructive use of conserve natural resources conserve our wildlife. 2 : to preserve with sugar. 3 : to maintain (a quantity) constant during a process of chemical, physical, or evolutionary change conserved DNA ...
- We know, acceleration is the change of velocity by time.
- Velocity is the speed of an object which also indicates the direction.
- Hence, acceleration is both dependant upon the speed as well as the direction.
- So, if an object is moving at a constant speed in a changing direction, the acceleration will also change. It will not be zero.
- An example is that of uniform circular motion.
Answer:
if an object is moving at a constant speed in a changing direction, the acceleration of the object will not be zero.
Explanation:
Constellation: The complete sky has been divided in 88 different areas, in a way we have divided Earth in countries, not necessarily having same shapes and size. These 88 areas are known as constellations. These contains a lot of stars. When we join the brightest stars together we can imagine a shape out of them which is called as Asterism. Most of the people are unaware of this difference. Some of the famous constellations are Orion, Taurus, Gemini, Hydra, Ursa Major etc.
When an astronomer says that there is a comet is in the Orion, he means that a comet is in the boundaries of Orion constellation.
Answer:
Gravity.
Rocket ships.
Ball.
Basketball.
Explanation:
Gravity has to do a lot with air. It puts the planets in there area.
Rocket Ship has to do a lot with air. If i'm right, they calculate the area, weather, about the air.
A ball gets throwed in the air, which gravity comes into place.
Basketball is also a similar example to a ball.
Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

If the package is barely lifted, that means that T=m_2*g; then:

Solving the equation for a_mín, we have:

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey: 
For the package: 
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package: 
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

Solving a, we have

We can then replace this value of a in one for the sums of force and find the tension T:
