Answer:
CaCO3 exoskeleton dissolves in acidic water
Explanation:
The increasing CO2 level makes the ocean water acidic and hence reduces the pH. In such acidic environment, marine organism that produce calcium carbonate shells or skeletons are negatively affected. Coral reefs and coralline algae abilities to produce skeleton also reduces.
Calcium carbonate dissolves in acid. Thus, the more acidic the ocean water is the faster and easier it is to dissolve the exoskeleton and shell of marine organisms made up of calcium carbonate
Volume of H2 produced = 57.6576 L
<h3>Further explanation</h3>
Given
23.17 g Be
Required
Volume of H2
Solution
Reaction
Be(s)+H2O(g)→BeO(s)+H2(g)
mol Be :
= 23.17 g : 9 g/mol
= 2.574
From the equation, mol H2 : mol Be = 1 : 1, so mol H2 = 2.574
Volume H2(assumed at STP, 1 mol=22.4 L) :
= 2.574 x 22.4 L
= 57.6576 L
Convert 72g of water into moles of water using molecular weights.
So water is H2O so add up those molecular weights (H=1 and O=16)
2(1)+(16) = 18 g/mol
Then convert so 72g / (18 g/mol) = 4 mol
Now you can convert mol of water to mol of oxygen. So 4 mol of water is 4 mol of oxygen. Then use oxygen molecular weight to find grams again.
4 mol oxygen * 16 g/mol = 64g of oxygen
If we were doing hydrogen instead of oxygen there would be 8 mol hydrogen in 4 mol of water (2 H’s in every H2O molecule) and since we have 74 grams and oxygen is 64 grams, Hydrogen should be 8 grams. Math to check below
8 mol hydrogen * 1 g/mol = 8g of hydrogen
It all adds to 72 so we are correct.
Answer: Fe2O3
Explanation:
5.60 g Iron Oxide
- 3.92 g Iron
===========
= 1.68 g Oxygen
Convert Fe and O to moles:
3.92 g Iron/55.85 = 0.0702 moles Fe
1.68 g Oxygen/16 = 0.105 moles O
The ratio of O to Fe is 1.50. There are 3/2 O for each Fe. Multiply by 2 to get whole numbers: 2Fe for every 3O: Fe2O3