1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Softa [21]
2 years ago
15

what device is made of coils of wire with an electrical current passing through it in order to generate a magnetic field

Physics
1 answer:
Umnica [9.8K]2 years ago
8 0

Transformer

<u>Explanation:</u>

A transformer is a device with two or more magnetically coupled windings. A time varying current in one coil (primary winding) generates a magnetic field which induces a voltage in the other coil (secondary winding). Transformers are capable of either increasing or decreasing the voltage and current levels of their supply, without modifying its frequency, or the amount of electrical power being transferred from one winding to another via the magnetic circuit. There are two types of transformer:

1. Step up transformer - increases voltage

2. Step down transformer - decreases voltage

You might be interested in
What is the time constant of a 9.0-nm-thick membrane surrounding a 0.040-mm-diameter spherical cell? Assume the resistivity of t
yawa3891 [41]

Given Information:

Diameter of spherical cell = 0.040 mm

thickness = L = 9 nm

Resistivity =  ρ = 3.6×10⁷ Ω⋅m

Dielectric constant = k = 9.0

Required Information:

time constant = τ = ?

Answer:

time constant = 2.87×10⁻³ seconds

Explanation:

The time constant is given by

τ = RC

Where R is the resistance and C is the capacitance.

We know that resistivity of of any material is given by

ρ = RA/L

R =  ρL/A

Where area of spherical cell is given by

A = 4πr²

A = 4π(d/2)²

A = 4π(0.040×10⁻³/2)²

A = 5.026×10⁻⁹ m²

The resistance becomes

R =  (3.6×10⁷*9×10⁻⁹)/5.026×10⁻⁹

R = 6.45×10⁷ Ω

The capacitance of the cell membrane is given by

C = kεoA/L

Where k = 9 is the dielectric constant and εo = 8.854×10⁻¹² F/m

C = (9*8.854×10⁻¹²*5.026×10⁻⁹)/9×10⁻⁹

C = 44.5 pF

C = 44.5×10⁻¹² F

Therefore, the time constant is

τ = RC

τ = 6.45×10⁷*44.5×10⁻¹²

τ = 2.87×10⁻³ seconds

6 0
2 years ago
What is the hang time when the person moves 6 m horizontally during a 1.25 m high jump?
AlekseyPX

Answer:

1 sec

Explanation:

Horizontal distance (x) = 6m

Vertical distance (y) = 1.25m

Hang time is the duration the object is in the air before it reaches maximum height.

The time of free fall is given by

t = √2y/g

g = acceleration due to gravity

t = √(2*1.25)/9.8

t = √2.5/9.8

t = 0.5secs

Hang time = 2*0.5

= 1 sec

3 0
3 years ago
A snowball accelerates at
ANTONII [103]

Answer:

0. 1226495726kg

Explanation:

Force is the product of mass and acceleration.

Mathematically,

Force(F) = mass (m)×acceleration(a)

Substituting the values into the equation

2. 87=m×23. 4

2. 87=m (23. 4)

2. 87/23. 4=m (23. 4)/23. 4

2. 87/23. 4=m

0. 1226495726=m

8 0
2 years ago
The​ time, t, required to drive a fixed distance varies inversely as the​ speed, r. It takes 3 hr at a speed of 14 ​km/h to driv
kenny6666 [7]

Answer:

time taken with speed 23 km/h will be 1.8 hours or 1 hour 48 minutes

Explanation:

Given:

Time is inversely proportional to the speed

mathematically,

t ∝ (1/r)

let the proportionality constant be 'k'

thus,

t = k/r

therefore, for case 1

time = 3 hr

speed = 14 km/hr

3 = k/14

also,

for case 2

let the time be = t

r = 23 km/h

thus,

we have

t = k/23

on dividing equation 2 by 1

we get

\frac{t}{3}=\frac{k/23}{k/14}

or

t=\frac{14\times3}{23}

or

t = 1.8 hr = or 1 hour 48 minutes ( 0.8 hours × 60 minutes/hour = 48 minutes)

4 0
2 years ago
Say that you are in a large room at temperature TC = 300 K. Someone gives you a pot of hot soup at a temperature of TH = 340 K.
DiKsa [7]

Answer:0.061

Explanation:

Given

T_C=300 k

Temperature of soup T_H=340 K

heat capacity of soup c_v=33 J/K

Here Temperature of soup is constantly decreasing

suppose T is the temperature of soup at any  instant

efficiency is given by

\eta =\frac{dW}{Q}=1-\frac{T_C}{T}

dW=Q(1-\frac{T_C}{T})

dW=c_v(1-\frac{T_C}{T})dT

integrating From T_H to T_C

\int dW=\int_{T_C}^{T_H}c_v(1-\frac{T_C}{T})dT

W=\int_{T_C}^{T_H}33\cdot (1-\frac{300}{T})dT

W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}

W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]

Now heat lost by soup is given by

Q=c_v(T_C-T_H)

Fraction of the total heat that is lost by the soup can be turned is given by

=\frac{W}{Q}

=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}

=\frac{T_C-T_H-T_C\ln (\frac{T_C}{T_H})}{T_C-T_H}

=\frac{300-340-300\ln (\frac{300}{340})}{300-340}

=\frac{-40+37.548}{-40}

=0.061

4 0
3 years ago
Other questions:
  • Taylor drives 5 miles in 10 minutes. She stops at a light for 2 minutes. She then travels another 10 miles in 8 minutes. What wa
    14·1 answer
  • Tina and her puppy are tugging on a rope, each pulling on opposite ends.
    13·2 answers
  • Problem 4: Hydraulic systems utilize Pascal's principle by transmitting pressure from one cylinder (called the primary) to anoth
    9·1 answer
  • The follow is an example of a mixture
    7·1 answer
  • Suppose you want to represent the velocity of a BALL with respect to a particular frame of reference from aboard a moving TRAIN.
    12·1 answer
  • Part C How might someone dispute the results of your investigation? How might you counter the argument?​
    5·2 answers
  • Plsss help I will mark brainlist
    15·2 answers
  • How much must you raise the
    12·1 answer
  • HEEEYYYYY HELLO CAN YOU HELP ME WITH THIS ? PLEASE? ​
    7·1 answer
  • A 500 lines per mm diffraction grating is illuminated by light of wavelength 580 nm . what is the maximum diffraction order seen
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!