Answer:
Explanation:
This is a circular motion questions
Where the oscillation is 27.3days
Given radius (r)=3.84×10^8m
Circular motion formulas
V=wr
a=v^2/r
w=θ/t
Now, the moon makes one complete oscillation for 27.3days
Then, one complete oscillation is 2πrad
Therefore, θ=2πrad
Then 27.3 days to secs
1day=24hrs
1hrs=3600sec
Therefore, 1day=24×3600secs
Now, 27.3days= 27.3×24×3600=2358720secs
t=2358720secs
Now,
w=θ/t
w=2π/2358720 rad/secs
Now,
V=wr
V=2π/2358720 ×3.84×10^8
V=1022.9m/s
Then,
a=v^2/r
a=1022.9^2/×3.84×10^8
a=0.0027m/s^2
Answer:50ms-1
Explanation:use the formula v=d/t
in order to find the velocity,devide the distance with time taken.
since distance is 400 meters devide it with seconds whiuch gives us 50.
<span>the scientists want the probe to stop immediately and move at constant velocity.
HAPPY VALENTINES </span>
Answer:
the magnitude and direction of d → B on the x ‑axis at x = 2.50 m is -6.4 × 10⁻¹¹T(Along z direction)
the magnitude and direction of d → B on the z ‑axis at z = 5.00 m is 1.6 × 10⁻¹¹T(Along x direction)
Explanation:
Use Biot, Savart, the magnetic field

Given that,
i = 1.00A
d → l = 4.00 m m ^ j
r = 2.5m
Displacement vector is


=2.5m
on the axis of x at x = 2.5

r = 2.5m
And unit vector


Therefore, the magnetic field is as follow


(Along z direction)
B)r = 5.00m
Displacement vector is


=5.00m
on the axis of x at x = 5.0

r = 5.00m
And unit vector


Therefore, the magnetic field is as follow


(Along x direction)
Work = (force) x (distance)
40,000 J = (20 N) x (distance)
Distance = (40,000 J) / (20 N)
= 2,000 meters
= 2 kilometers.
(20 N is not a huge force when it's being used to move a car.
It's only about 4.5 pounds.)