Answer:
Newton's law of gravitation = statement that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.
Explanation:
The equation for Newton's Universal Law of gravitation is F=GmM/r^2. Pls brainliest.
If Equal distance is traveled in equal interval of time then it is known as uniform motion in which velocity of object will remain same.
Then if distance covered will be same and the time taken to cover same distance is decreasing then it shows that speed is increasing with time due to which it took less time to cover same distance. This is also known as positive acceleration.
Now if the distance covered will be same and time taken to cover same distance is increasing then it shows that speed is decreasing with time due to which it took more time to cover the same distance. This is also known as negative acceleration.
Now in the above case it is given that the first mile takes you 10 minutes. The second mile takes you 20 minutes. So the time taken is increasing while we cover same distance so this is an example of <u>Negative Acceleration</u>
The answer is speed: 4.7 km/h, velocity: 3.3 km/h.
Distances and time are given:
d1 = 4 km
d2 = 3 km
d3 = 5 km
t = 1.5 h
The speed can be expressed as a distance (d) divided by time (t). The average speed (s) is total distance travelled divided by time:
s = (d1 + d2)/t = (4+3)/1.5 = 7/1.5 = 4.7 km/h
The average velocity (v) is total displacement (d₁) from the starting point divided by time. Since Mary's starting point was home, and she walked to the supermarket, which is 5.0 kilometers from her own home, her displacement is 5 km:
v = d₁/t = 5/1.5 = 3.3 km/h
Answer: 1 dioptre of power of a lens is defined as the unit of measuring the power of optical lens Or curved mirror which is equal to the reciprocal of the focal length. The focal length is measured in the meter. 1 dioptre is equal to 1/m where m is the focal length. Basically dioptre is the SI unit of optical power of the lens.