The property of semiconductors that makes them most useful for constructing electronic devices is that their properties allow them to be used to control the flow of charge.
A redox reaction be used as a source of electrical energy only when two half-reactions are physically separated. <span>The electrons that are released at the anode flow through the wire, producing an electric current. Galvanic cells therefore transform chemical energy into electrical energy that can then be used to do work.</span>
I don't understand what is (g).
Maybe the answer is 2H<span>(aq)S</span>₂<span>−2(aq) </span>⇒ <span>H</span>₂<span>S</span>₂.
Answer:
K = [HI]² / [H₂] [I₂]
Explanation:
To write the expression of equilibrium constant, K, it is important that we know how to obtain the equilibrium constant.
The equilibrium constant, K for a given reaction is simply defined as the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient. Thus, the equilibrium constant is written as follow:
K = [Product] / [Reactant]
Now, we shall determine the equilibrium constant for the reaction given in the question above. This can be obtained as illustrated below:
H₂(g) + I₂(g) —> 2HI (g)
K = [HI]² / [H₂] [I₂]