Answer:
The maximum electric power output is 
Explanation:
From the question we are told that
The capacity of the hydroelectric plant is 
The level at which water is been released is 
The efficiency is
0.90
The electric power output is mathematically represented as
Where
is the potential energy at level h which is mathematically evaluated as

and
is the potential energy at ground level which is mathematically evaluated as


So
here 
where V is volume and
is density of water whose value is 
So

substituting values


The maximum possible electric power output is

substituting values


Answer:
C. Overcome Friction
Explanation:
When using any machine usually those with moving parts, you may notice heat forming near the areas where most movement occurs. As friction continues, more energy is used up and released as heat. For that reason, the efficiency of a machine will forever be less than 100%
Answer:

Explanation:
<u>LC Circuit</u>
It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:
= charge of the capacitor in any time 
= initial charge of the capacitor
=angular frequency of the circuit
= current through the circuit in any time 
The charge in an LC circuit is given by

The current is the derivative of the charge

We are given

It means that
![q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]](https://tex.z-dn.net/?f=q%28t_1%29%20%3D%20q_0%20%5C%2C%20cos%20%28%5Comega%20t_1%20%29%3Dq_1%5C%20.......%5Beq%201%5D)
![i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]](https://tex.z-dn.net/?f=i%28t_1%29%20%3D%20-%20%5Comega%20q_0%20%5C%2C%20sin%28%5Comega%20t_1%29%3Di_1.........%5Beq%202%5D)
From eq 1:

From eq 2:

Squaring and adding the last two equations, and knowing that


Operating

Solving for 

Now we know the value of
, we repeat the procedure of eq 1 and eq 2, but now at the second time
, and solve for 

Solving for 

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.




Finally


Answer:
8.854 pF
Explanation:
side of plate = 0.1 m ,
d = 1 cm = 0.01 m,
V = 5 kV = 5000 V
V' = 1 kV = 1000 V
Let K be the dielectric constant.
So, V' = V / K
K = V / V' = 5000 / 1000 = 5
C = ε0 A / d = 8.854 x 10^-12 x 0.1 x 0.1 / 0.01 = 8.854 x 10^-12 F
C = 8.854 pF
Answer:
A.
Explanation:
I think it might be the big number A