No it cannot because you would have to test it over and over again to make sure it was correct the first time.
Answer:
The general equation of movement in fluids is obtained from the application, at fluid volumes, of the principle of conservation of the amount of linear movement. This principle establishes that the variation over time of the amount of linear movement of a fluid volume is equal to that resulting from all forces (of volume and surface) acting on it. Expressed in This equation is called the Navier-Stokes equation.
The equation is shown in the attached file
Explanation:
The derivative of velocity with respect to time determines the change in the velocity of a particle of the fluid as it moves in space. It also includes convective acceleration, expressed by a nonlinear term that comes from convective inertia forces). With this equation, Stokes studied the motion of an infinite incompressible viscous fluid at rest at infinity, and in which a solid sphere of radius r makes a rectilinear and uniform translational motion of velocity v. It assumes that there are no external forces and that the movement of the fluid relative to a reference system on the sphere is stationary. Stokes' approach consists in neglecting the nonlinear term (associated with inertial forces due to convective acceleration).
Chemical composition, the element no longer retains the same chemical formula as it did before.
Answer:
<h3>
Young modulus of elasticity for a gas is</h3><h2>
<em>Zero</em></h2>
Explanation:
<em>As</em><em> </em><em>the</em><em> </em><em>gas</em><em> </em><em>doesn't</em><em> </em><em>undergo</em><em> </em><em>any</em><em> </em><em>chan</em><em>g</em><em>es</em><em> </em>
<em>so</em><em> </em><em>the</em><em> </em><em>young</em><em> </em><em>modules</em><em> </em><em>of</em><em> </em><em>gas</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>defined</em><em>.</em><em>.</em><em>.</em>
F up HC Chi UC Chi UC CI UC CJ