<span>KCl<span>O3</span><span>(s)</span>+Δ→KCl<span>(s)</span>+<span>32</span><span>O2</span><span>(g)</span></span>
Approx. <span>3L</span> of dioxygen gas will be evolved.
Explanation:
We assume that the reaction as written proceeds quantitatively.
Moles of <span>KCl<span>O3</span><span>(s)</span></span> = <span><span>10.0⋅g</span><span>122.55⋅g⋅mo<span>l<span>−1</span></span></span></span> = <span>0.0816⋅mol</span>
And thus <span><span>32</span>×0.0816⋅mol</span> dioxygen are produced, i.e. <span>0.122⋅mol</span>.
At STP, an Ideal Gas occupies a volume of <span>22.4⋅L⋅mo<span>l<span>−1</span></span></span>.
And thus, volume of gas produced = <span>22.4⋅L⋅mo<span>l<span>−1</span></span>×0.0816⋅mol≅3L</span>
Note that this reaction would not work well without catalysis, typically <span>Mn<span>O2</span></span>.
Non-volatile solutes such as salt raises the boiling point of water. Hope the answer helps! Good luck!
C. The reaction goes from one of less moles to more causing it to be more disordered and therefore have a positive change in s
<span>I believe an oxidation reaction is occurring</span>