Answer:
The answer is tiny organisms known as cyanobacteria, or blue-green algae. These microbes conduct photosynthesis: using sunshine, water and carbon dioxide to produce carbohydrates and, yes, oxygen.
:-))
<u>Answer:</u> The increase in pressure is 0.003 atm
<u>Explanation:</u>
To calculate the final pressure, we use the Clausius-Clayperon equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= final pressure = ?
= Enthalpy change of the reaction = 28.8 kJ/mol = 28800 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![801^oC=[801+273]K=1074K](https://tex.z-dn.net/?f=801%5EoC%3D%5B801%2B273%5DK%3D1074K)
= final temperature = ![(801+1.00)^oC=802.00=[802+273]K=1075K](https://tex.z-dn.net/?f=%28801%2B1.00%29%5EoC%3D802.00%3D%5B802%2B273%5DK%3D1075K)
Putting values in above equation, we get:
![\ln(\frac{P_2}{1})=\frac{28800J/mol}{8.314J/mol.K}[\frac{1}{1074}-\frac{1}{1075}]\\\\\ln P_2=3\times 10^{-3}atm\\\\P_2=e^{3\times 10^{-3}}=1.003atm](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7B1%7D%29%3D%5Cfrac%7B28800J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B1074%7D-%5Cfrac%7B1%7D%7B1075%7D%5D%5C%5C%5C%5C%5Cln%20P_2%3D3%5Ctimes%2010%5E%7B-3%7Datm%5C%5C%5C%5CP_2%3De%5E%7B3%5Ctimes%2010%5E%7B-3%7D%7D%3D1.003atm)
Change in pressure = 
Hence, the increase in pressure is 0.003 atm
It depends on the plant you have. when you buy a new plant it usually has instructions so you would follow. Hope it helps!!!
Answer:
The atoms have the same chemical symbol.
A. The longest carbon chain is eight, and it has two methyl groups attached to carbon three, and a special group attached to carbon five. Its two names could be:
3-dimethyl-5-(1-methylethyl)octane
3-dimethyl-5-isopropyloctane
Both of these are correct. This is an alkane, because it has all single bonds.
B. This has a triple bond contained between carbons 2 and 3, and has a methyl group off carbon 4. The longest chain is 5. It’s name is:
4-methyl-2-pentyne
This is an alkene, because of the double bond.
C. This has a double bond contained between carbons 2 and 3, and has a methyl off of four and an methyl off of six. The longest chain is eight (follow the longest chain of carbons).
4,6-dimethyl-2-octene
This is an alkene, because of the double bond.
D. This has an ethyl group at 1 and a methyl group at 2 (rotate the compound to make it as clean as possible, in this case, the ring is flipped and rotated to make it alphabetical with the smallest numbers possible). The two names are:
1-ethyl-2-methylbenzene
ortho-ethylmethylbenzene
Both are correct, the ortho prefix telling the location of the ethyl and methyl groups. This is an aromatic structure because of its double bonded ring.
E. The longest chain is nine, and has methyls at three, five, and seven, along with a propyl at five. The name is:
3,5,7-trimethyl-5-propylnonane
This is an alkane, due to the single bonds.
Hope this helps!