S orbital.
Group 1 elements have a general configuration
, where n represents the highest occupied Principal Energy Level. For example, Lithium has the valence configuration
whereas Cesium has
. Both of them belong to Group 1 of Periodic Table.
Group 2 elements have a general configuration of
. For example, Magnesium has
as its outer shell configuration while Strontium has the same as
.
We see that in both the cases, the outermost S orbital is being filled.
My answer -
the corona,
the sun's outer layer, reaches temperatures of up to 2 million degrees
Fahrenheit (1.1 million Celsius). At this level, the sun's gravity can't
hold on to the rapidly moving particles, and it streams away from the
star.
The sun's activity shifts over the course of its 11-year cycle, with
sun spot numbers, radiation levels, and ejected material changing over
time. These alterations affect the properties of the solar wind,
including its magnetic field properties, velocity, temperature and
density. The wind also differs based on where on the sun it comes from
and how quickly that portion is rotating.
The velocity of the solar wind
is higher over coronal holes, reaching speeds of up to 500 miles (800
kilometers) per second. The temperature and density over coronal holes
are low, and the magnetic field is weak, so the field lines are open to
space. These holes occur at the poles and low latitudes, and reach their
largest when activity on the sun is at its minimum. Temperatures in the
fast wind can reach up to 1 million degrees F (800,000 C).
At the coronal streamer belt around the equator, the solar wind travels
more slowly, at around 200 miles (300 km) per second. Temperatures in
the slow wind reach up to 2.9 million F (1.6 million C).
p.s
Glad to help you and if you need anything else on brainly let me know so I can elp you again have an AWESOME!!! :^)
Answer:
hydrogen
helium
oxygen
Explanation:
join this grop to get instant answer
it's very helpful
Answer:
19.6N
Explanation:
Given parameters:
Mass of rock = 2kg
Speed = 30m/s
Unknown:
Net force on the rock = ?
Solution:
The net force acting on this rock is a function of the acceleration due to gravity acting upon it.
Net force = weight = mass x acceleration due to gravity
Net force = 2 x 9.8 = 19.6N downward