Answer:
The lever is a movable bar that pivots on a fulcrum attached to a fixed point. The lever operates by applying forces at different distances from the fulcrum, or a pivot. As the lever rotates around the fulcrum, points farther from this pivot move faster than points closer to the pivot.
IF HELPED MARK AS BRAINLIEST
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
The sound gets louder as it gets closer and when it passes is gets softer
Answer:
(a) 61.25 N
(b) 6.25 kg
(c) 6.25 Kg
Explanation:
Weight on moon = 10 N
Acceleration due to gravity on moon = 1.6 m/s^2
Acceleration due to gravity on earth = 9.8 m/s^2
Let m be the mass of the package.
(a) Weight on earth = mass x acceleration due to gravity on earth
Weight on earth = 6.25 x 9.8 = 61.25 N
(b) Weight on moon = mass x acceleration due to gravity on moon
10 = m x 1.6
m = 6.25 kg
(c) Mass of the package remains same as mass does not change, so the mass of package on earth is 6.25 kg.