To solve this problem it is necessary to apply the concepts related to transformers, that is to say passive electrical device that transfers electrical energy from one electrical circuit to one or more circuits.
From the mathematical definition we have that the relationship between the voltage of the first coil and the second coil is proportional to the number of loops of the first and second loop, that is:
Where
input voltage on the primary coil.
input voltage on the secondary coil.
number of turns of wire on the primary coil.
number of turns of wire on the secondary coil.
Replacing our values we have:
Replacing,
From the same relations of number of turns and the voltage of the first and second coil we also have the relation of electricity and voltage whereby:
Where
= Current Primary Coil
= Current secundary Coil
Therefore:
Therefore the maximum values for the secondary coil of the voltage is 410.56V and Current is 1.87A
The gravitational force between two masses is given by:
where
G is the gravitational constant
m1 and m2 are the two masses
r is the separation between the two masses
We see that the force is proportional to the inverse of the square of the distance:
therefore, if the distance is tripled:
r'=3r
The force decreases by a factor 1/9:
Since the original force was 36 N, the new force will be
Explanation:
d frequency I learned it last year
Lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students. Option D is correct.
<h3>
What is a Transverse wave?</h3>
- The wave in which the oscillation of particles is is perpendicular to the direction of energy transfer.
- The students can make a transverse wave by raising their hands up and then down, one student at a time.
- The raised hand represents the oscillation of particles while the sequence of the raising hand represents the direction of energy transfer.
Therefore, lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students.
Learn more about Transverse waves:
brainly.com/question/3813804
Answer:
An example of kinetic energy is a <u><em>car coming to a stop</em></u>
Explanation:
Kinetic energy is the energy that a body or system possesses due to its movement. In physics this energy is defined as the amount of work necessary to accelerate a body of a certain mass and in rest position, until reaching a certain speed. This energy obtained will remain unchanged as long as this body does not vary its speed. That is, kinetic energy measures how many changes an object that is moving can cause.
<u><em>An example of kinetic energy is a car coming to a stop</em></u>. If the car is moving and comes to a stop, there is a change in speed, therefore in movement, eventually producing a change in kinetic energy. This energy depends on the mass of the body, in this case the car, and the speed. As the speed decreases, the kinetic energy will decrease.