For a standing wave on a string, the wavelength is equal to twice the length of the string:

In our problem, L=50.0 cm=0.50 m, therefore the wavelength of the wave is

And the speed of the wave is given by the product between the frequency and the wavelength of the wave:
Answer: Charge = -2.4x10^-9 Coulombs
Explanation:
The charge of one electron is e = -1.6x10^-19 C
Then, the charge of 1.5 x 10^10 electrons is equal to 1.5 x 10^10 times the charge of one electron:
Here i will use the relation (a^b)*(a^c) = a^(b + c)
Charge = ( 1.5 x 10^10)*( -1.6x10^-19 C) = -2.4x10^(10 - 19) C
Charge = -2.4x10^-9 C
Answer:
the required minimum magnitude of the force F is 21 N
Explanation:
Given the data in the question,
m = 5 kg
width = 60 cm
height = 80 cm
Let force is F represent in the image below,
so when the block about to rotate normal shifted to edge of cube
mg(w/2) = Fh
F = mg(w/2) / h
we know that g = 9.8 m/s²
we substitute
F = (5 × 9.8 ( 60/2)) / 70
F = (5 × 9.8 × 30 ) / 70
F = 1470 / 70
F = 21 N
Therefore, the required minimum magnitude of the force F is 21 N
The work-energy theorem says that the total work done on the block is equal to the difference of its kinetic energies at points B and A. Then the total work done on the block is

Friction acts on the block to oppose its motion, so it does negative work on the block, -4.5 J.
The only other force acting on the block as it moves is the force <em>P</em>. Let
be the work done by the force <em>P</em>. Then the total work done on the block is
