1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
3 years ago
6

Hot air balloons float in the air because of the difference in density between cold and hot air. In this problem, you will estim

ate the minimum temperature the gas inside the balloon needs to be, for it to take off. To do this, use the following variables and make these assumptions: The combined weight of the pilot basket together with that of the balloon fabric and other equipment is W. The volume of the hot air inside the balloon when it is inflated is V. The absolute temperature of the hot air at the bottom of the balloon is Th (where Th>Tc). The absolute temperature of the cold air outside the balloon is Tc and its density is ?c. The balloon is open at the bottom, so that the pressure inside and outside the balloon is the same. As always, treat air as an ideal gas. Use g for the magnitude of the acceleration due to gravity. Here is the actual question!!!! What is the density ?h of hot air inside the balloon? Assume that this density is uniform throughout the balloon. Express the density in terms of Th, Tc, and ?c.
Physics
1 answer:
Kipish [7]3 years ago
3 0

Answer: \rho_{h}=\frac{m}{m_{air}} \frac{\rho_{c} T_{c}}{T_{h}}

Explanation:

We have the followin data:

W=mg is the combined weight of the pilot basket together with that of the balloon fabric and other equipment

m is the combined mass of the pilot basket together with that of the balloon fabric and other equipment

g is the acceleration due gravity

V is the volume of the hot air inside the balloon when it is inflated

T_{h} is the absolute temperature of the hot air at the bottom of the balloon, being T_{h}>T_{c}

T_{c} is the absolute temperature of the cold air outside

\rho_{c} is the density of the cold air outside

\rho_{h} is the density of the hot air inside

P_{in}=P_{out} where P_{in} is the pressure at the inside and P_{out} is the pressure at the outside

Well, let's begin by writting the equations for the density:

Density cold air outside:

\rho_{c}=\frac{m_{air}}{V_{air}} (1)

Where m_{air} is the mass of air outside and V_{air} is the volume of air outside

Isolating V_{air} we have:

V_{air}=\frac{m_{air}}{\rho_{c}} (2)

Density hot air inside:

\rho_{h}=\frac{m}{V} (3)

Where m=\frac{W}{g}

Then:

\rho_{h}=\frac{\frac{W}{g}}{V} (4)

On the other hand, the The Ideal Gas equation is:  

P.V=n.R.T  (5)

Where:  

P is the pressure of the gas  

n the number of moles of gas  

R is the gas constant  

T is the absolute temperature of the gas in Kelvin.

V is the volume

This can be rewritten as:

P=\frac{n.R.T}{V}  (6)

Since P_{in}=P_{out}:

\frac{n.R.T_{h}}{V}=\frac{n.R.T_{c}}{V_{air}}  (7)

Isolating V:

V=\frac{T_{h}V_{air}}{T_{c}}  (8)

Substituting (8) in (3):

\rho_{h}=\frac{m}{\frac{T_{h}V_{air}}{T_{c}}} (9)

Substituting (2) in (9):

\rho_{h}=\frac{m}{\frac{T_{h}\frac{m_{air}}{\rho_{c}}}{T_{c}}} (10)

Rearranging:

\rho_{h}=\frac{m}{m_{air}} \frac{\rho_{c}T_{c}}{T_{h}}

You might be interested in
What is 18 degrees celsius in fahrenheit ?
Butoxors [25]
18 degree is equal to 64.4 fahrenheit

4 0
2 years ago
Maceo is making rock candy. Which best describes the steps she should take?
Andru [333]

Answer:

The answer is heat a saturated sugar water solution, dissolve more sugar, then let the solution cool

Explanation:

3 0
3 years ago
Read 2 more answers
What can you say about the speed of light in diamond?
Inessa05 [86]
So n=c/v, n= index, c=speed of light and v= speed of light in diamond. 2.42=c/v so v=c/2.42, c≈<span>3x108 m/sec</span><span> so v=</span><span>1.24x108 m/sec</span>.
<span>Hope this helps.</span>
7 0
2 years ago
A leaf falls from a tree. Because the leaf is so light, it will be affected by air
postnew [5]

Answer:

b

Explanation:

7 0
3 years ago
Returning once again to our table top example of a horizontal mass on a low-friction surface with m = 0.254 kg and k = 10.0 N/m
Julli [10]

Explanation:

Given that,

Mass = 0.254 kg

Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]

Force = 0.5 N

y = 0.628

We need to calculate the A and d

Using formula of A and d

A=\dfrac{\dfrac{F_{0}}{m}}{\sqrt{(\omega_{0}^2-\omega^{2})^2+y^2\omega^2}}.....(I)

tan d=\dfrac{y\omega}{(\omega^2-\omega^2)}....(II)

Put the value of \omega=0.628\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-0.628)^2+0.628^2\times0.628^2}}

A=0.0198

From equation (II)

tan d=\dfrac{0.628\times0.628}{((10.0^2-0.628)^2)}

d=0.0023

Put the value of \omega=3.14\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-3.14)^2+0.628^2\times3.14^2}}

A=0.0203

From equation (II)

tan d=\dfrac{0.628\times3.14}{((10.0^2-3.14)^2)}

d=0.0120

Put the value of \omega=6.28\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-6.28)^2+0.628^2\times6.28^2}}

A=0.0209

From equation (II)

tan d=\dfrac{0.628\times6.28}{((10.0^2-6.28)^2)}

d=0.0257

Put the value of \omega=9.42\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-9.42)^2+0.628^2\times9.42^2}}

A=0.0217

From equation (II)

tan d=\dfrac{0.628\times9.42}{((10.0^2-9.42)^2)}

d=0.0413

Hence, This is the required solution.

5 0
3 years ago
Other questions:
  • A block of mass 0.240 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that th
    7·1 answer
  • a 1430 kg car speeds up from 7.50 m/s to 11.0 m/s in 9.30 s. Ignoring friction, how much power did that require?
    15·1 answer
  • A tennis player tosses a tennis ball straight up and then catches it after 1.77 s at the same height as the point of release. (a
    14·1 answer
  • Rocks that fall out of the sky and land on Earth are called _____________. Question 7 options: A.meteorites B.asteroids C.comets
    11·2 answers
  • A ________ is a rigid layer that surrounds a plant cell, providing structural support.
    8·2 answers
  • How do you do 12, 13, and 14?
    14·1 answer
  • 1. Alexandra and Rachel are on a train that sounds a whistle at a constant frequency as
    12·2 answers
  • Aperson walk along actual path of radias 5m/s in 10 second what is the acceleration​
    5·1 answer
  • 1. Describe what conversation of momentum means.
    13·2 answers
  • Define potential difference as used in electricity​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!