1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
3 years ago
6

Hot air balloons float in the air because of the difference in density between cold and hot air. In this problem, you will estim

ate the minimum temperature the gas inside the balloon needs to be, for it to take off. To do this, use the following variables and make these assumptions: The combined weight of the pilot basket together with that of the balloon fabric and other equipment is W. The volume of the hot air inside the balloon when it is inflated is V. The absolute temperature of the hot air at the bottom of the balloon is Th (where Th>Tc). The absolute temperature of the cold air outside the balloon is Tc and its density is ?c. The balloon is open at the bottom, so that the pressure inside and outside the balloon is the same. As always, treat air as an ideal gas. Use g for the magnitude of the acceleration due to gravity. Here is the actual question!!!! What is the density ?h of hot air inside the balloon? Assume that this density is uniform throughout the balloon. Express the density in terms of Th, Tc, and ?c.
Physics
1 answer:
Kipish [7]3 years ago
3 0

Answer: \rho_{h}=\frac{m}{m_{air}} \frac{\rho_{c} T_{c}}{T_{h}}

Explanation:

We have the followin data:

W=mg is the combined weight of the pilot basket together with that of the balloon fabric and other equipment

m is the combined mass of the pilot basket together with that of the balloon fabric and other equipment

g is the acceleration due gravity

V is the volume of the hot air inside the balloon when it is inflated

T_{h} is the absolute temperature of the hot air at the bottom of the balloon, being T_{h}>T_{c}

T_{c} is the absolute temperature of the cold air outside

\rho_{c} is the density of the cold air outside

\rho_{h} is the density of the hot air inside

P_{in}=P_{out} where P_{in} is the pressure at the inside and P_{out} is the pressure at the outside

Well, let's begin by writting the equations for the density:

Density cold air outside:

\rho_{c}=\frac{m_{air}}{V_{air}} (1)

Where m_{air} is the mass of air outside and V_{air} is the volume of air outside

Isolating V_{air} we have:

V_{air}=\frac{m_{air}}{\rho_{c}} (2)

Density hot air inside:

\rho_{h}=\frac{m}{V} (3)

Where m=\frac{W}{g}

Then:

\rho_{h}=\frac{\frac{W}{g}}{V} (4)

On the other hand, the The Ideal Gas equation is:  

P.V=n.R.T  (5)

Where:  

P is the pressure of the gas  

n the number of moles of gas  

R is the gas constant  

T is the absolute temperature of the gas in Kelvin.

V is the volume

This can be rewritten as:

P=\frac{n.R.T}{V}  (6)

Since P_{in}=P_{out}:

\frac{n.R.T_{h}}{V}=\frac{n.R.T_{c}}{V_{air}}  (7)

Isolating V:

V=\frac{T_{h}V_{air}}{T_{c}}  (8)

Substituting (8) in (3):

\rho_{h}=\frac{m}{\frac{T_{h}V_{air}}{T_{c}}} (9)

Substituting (2) in (9):

\rho_{h}=\frac{m}{\frac{T_{h}\frac{m_{air}}{\rho_{c}}}{T_{c}}} (10)

Rearranging:

\rho_{h}=\frac{m}{m_{air}} \frac{\rho_{c}T_{c}}{T_{h}}

You might be interested in
How is the pool play helping Adam lift the object
lorasvet [3.4K]
Adam<span> applies and input force to the pulley as he pulls down to </span>lift the object<span>. As he does this, </span>Adam<span>wonders about how the pulley is </span>helping<span> him

</span>
8 0
3 years ago
An imaginary line perpendicular to a reflecting surface is called _________.
n200080 [17]
<span>An imaginary line perpendicular to a reflecting surface is called "a normal" (principle line)

So, Your Answer would be Option B

Hope this helps!</span>
5 0
3 years ago
Read 2 more answers
A certain parallel-plate capacitor is filled with a dielectric for which Κ = 5.5 .The area of each plate is 0.034 m2 , and the p
Nesterboy [21]

Answer:

The maximum energy that can be stored in the capacitor is  6.62 x 10⁻⁵ J

Explanation:

Given that,

dielectric constant k = 5.5

the area of each plate, A = 0.034 m²

separating distance, d =  2.0 mm = 2 x 10⁻³ m

magnitude of the electric field =  200 kN/C

Capacitance of the capacitor is calculated as follows;

C = \frac{k \epsilon A}{d} = \frac{5.5*8.85*10^{-12}*0.034}{2*10^{-3}} = 8.275 *10^{-10} \ F

Maximum potential difference:

V = E x d

V = 200000 x 2 x 10⁻³ = 400 V

Maximum energy that can be stored in the capacitor:

E = ¹/₂CV²

E = ¹/₂ x 8.275 x 10⁻¹⁰ x (400)²

E = 6.62 x 10⁻⁵ J

Therefore, the maximum energy that can be stored in the capacitor is  6.62 x 10⁻⁵ J

4 0
3 years ago
A 13-kg sled is moving at a speed of 3.0 m/s. At which of the following speeds will the sled have twice as much kinetic energy?
AysviL [449]
K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2

So, option B is your answer!

Hope this helps!

7 0
3 years ago
A student adds two vectors of magnitudes 48 m and 22 m. What are the maximum and minimum possible values for the resultant of th
Julli [10]

Answer:

<em>Maximum=70 m</em>

<em>Minimum=26 m</em>

Explanation:

<u>Vector Addition </u>

Since vectors have magnitude and direction, adding them takes into consideration not only the magnitudes but also their respective directions. Two vectors can be totally collaborative, i.e., point to the same direction, or be totally opposite. In the first case, the magnitude of the sum is at maximum. Otherwise, it's at a minimum.

Thus, the maximum magnitude of the sum is 48+22 = 70 m and the minimum magnitude of the sum is 48-22= 26 m

4 0
3 years ago
Other questions:
  • Please help answer #14!!!!!!!
    8·1 answer
  • Newton's third law says that for every action force there is a reaction force which is
    5·1 answer
  • Two students who live on planet X. They want to estimate the circumference. The two students synchronize their watches before on
    12·1 answer
  • What force is required to push a block (mass m) up an inclined plane that makes an angle of θ with the horizon at a constant vel
    6·1 answer
  • A 10-μF capacitor in an LC circuit made entirely of superconducting materials ( R = 0 Ω ) is charged to 100 μC. Then a supercond
    6·1 answer
  • The light bulb transfers electrical energy into light. What is one type of energy that is also generated that is NOT a desired e
    13·2 answers
  • What does the atomic number of an atom tell us?
    5·2 answers
  • Which term is defined as the ratio of the speed of light in a vacuum to the speed of light in the material it is passing through
    5·1 answer
  • an 269 kg object is moved a distance of 1.9 m by a force if 580 j of work is done on the object what is the object acceleration
    14·1 answer
  • As shown in the figure, a given force is applied to a rod in several different ways. In which case is the torque about the pivot
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!