1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
3 years ago
6

Hot air balloons float in the air because of the difference in density between cold and hot air. In this problem, you will estim

ate the minimum temperature the gas inside the balloon needs to be, for it to take off. To do this, use the following variables and make these assumptions: The combined weight of the pilot basket together with that of the balloon fabric and other equipment is W. The volume of the hot air inside the balloon when it is inflated is V. The absolute temperature of the hot air at the bottom of the balloon is Th (where Th>Tc). The absolute temperature of the cold air outside the balloon is Tc and its density is ?c. The balloon is open at the bottom, so that the pressure inside and outside the balloon is the same. As always, treat air as an ideal gas. Use g for the magnitude of the acceleration due to gravity. Here is the actual question!!!! What is the density ?h of hot air inside the balloon? Assume that this density is uniform throughout the balloon. Express the density in terms of Th, Tc, and ?c.
Physics
1 answer:
Kipish [7]3 years ago
3 0

Answer: \rho_{h}=\frac{m}{m_{air}} \frac{\rho_{c} T_{c}}{T_{h}}

Explanation:

We have the followin data:

W=mg is the combined weight of the pilot basket together with that of the balloon fabric and other equipment

m is the combined mass of the pilot basket together with that of the balloon fabric and other equipment

g is the acceleration due gravity

V is the volume of the hot air inside the balloon when it is inflated

T_{h} is the absolute temperature of the hot air at the bottom of the balloon, being T_{h}>T_{c}

T_{c} is the absolute temperature of the cold air outside

\rho_{c} is the density of the cold air outside

\rho_{h} is the density of the hot air inside

P_{in}=P_{out} where P_{in} is the pressure at the inside and P_{out} is the pressure at the outside

Well, let's begin by writting the equations for the density:

Density cold air outside:

\rho_{c}=\frac{m_{air}}{V_{air}} (1)

Where m_{air} is the mass of air outside and V_{air} is the volume of air outside

Isolating V_{air} we have:

V_{air}=\frac{m_{air}}{\rho_{c}} (2)

Density hot air inside:

\rho_{h}=\frac{m}{V} (3)

Where m=\frac{W}{g}

Then:

\rho_{h}=\frac{\frac{W}{g}}{V} (4)

On the other hand, the The Ideal Gas equation is:  

P.V=n.R.T  (5)

Where:  

P is the pressure of the gas  

n the number of moles of gas  

R is the gas constant  

T is the absolute temperature of the gas in Kelvin.

V is the volume

This can be rewritten as:

P=\frac{n.R.T}{V}  (6)

Since P_{in}=P_{out}:

\frac{n.R.T_{h}}{V}=\frac{n.R.T_{c}}{V_{air}}  (7)

Isolating V:

V=\frac{T_{h}V_{air}}{T_{c}}  (8)

Substituting (8) in (3):

\rho_{h}=\frac{m}{\frac{T_{h}V_{air}}{T_{c}}} (9)

Substituting (2) in (9):

\rho_{h}=\frac{m}{\frac{T_{h}\frac{m_{air}}{\rho_{c}}}{T_{c}}} (10)

Rearranging:

\rho_{h}=\frac{m}{m_{air}} \frac{\rho_{c}T_{c}}{T_{h}}

You might be interested in
A person walks the path shown below. The total trip consists of four straight-line paths.
dmitriy555 [2]

At the end of the walk, the person's resultant displacement is 495.1 m at 63⁰ south of west.

<h3>What is resultant displacement?</h3>

The resultant displacement of an object is the change in position of the object. It can be described as the shortest distance connecting the final position of the object to the initial position of the object.

<h3>Net horizontal displacement </h3>

Path 1 = 40 m

Path 2 = 0 m

Path 3 = 110 m x cos(30) = 95.26 m

Path 4 = 180 m x cos(60) = 90 m

Total horizontal displacement, X = 40 m + 0 m + 95.26 m + 90 m = 225.26 m

<h3>Net vertical displacement </h3>

Path 1 = 0 m

Path 2 = 230 m

Path 3 = 110 m x sin(30) = 55 m

Path 4 = 180 m x sin(60) = 155.885 m

Total horizontal displacement, Y = 0 m + 230 m + 55 m + 155.885 m = 440.885 m

<h3>Resultant displacement</h3>

R = √(X² + Y²)

R = √(225.26² + 440.885²)

R = 495.1 m

<h3>Direction of the displacement</h3>

θ = arc tan (Y/X)

θ = arc tan (440.885/225.26)

θ =  63⁰

Thus, at the end of the walk, the person's resultant displacement is 495.1 m at 63⁰ south of west.

Learn more about resultant displacement here: brainly.com/question/13309193

#SPJ1

3 0
11 months ago
An earthquake’s epicenter is _____.
Evgen [1.6K]
The point in which it originates.
4 0
3 years ago
Read 2 more answers
Newton began his academic career in 1667. For how long was he a working scientist? Was he a very productive scientist?
rjkz [21]
Newton's 3 laws are...

inertia: things tend to continue to do what they are doing.

Change: to make something change you need a force to change it. the force needed = the mass times its acceleration

<span> Resistance: When you push on something, it pushes back. 

From yahoo answers
</span>
7 0
3 years ago
A 2.6 kg mass attached to a light string rotates on a horizontal,
Ainat [17]

The maximum speed the mass can have before it breaks is 2.27 m/s.

The given parameters:

  • <em>maximum mass the string can support before breaking, m = 17.9 kg</em>
  • <em>radius of the circle, r = 0.525 m</em>

The maximum speed the mass can have before it breaks is calculated as follows;

T = ma_c\\\\Mg = \frac{Mv^2}{r} \\\\v^2 = rg\\\\v = \sqrt{rg} \\\\v_{max} = \sqrt{0.525 \times 9.8} \\\\v_{max} = 2.27 \ m/s

Thus, the maximum speed the mass can have before it breaks is 2.27 m/s.

Learn more about maximum speed of horizontal circle here:brainly.com/question/21971127

8 0
2 years ago
The table below describes 100 offspring of the same two parents. What are the most likely genotypes of the parents?
mars1129 [50]

Answer:

im very con fused on what you mean by this

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is one common way that a charge can accumulate on a object?
    10·1 answer
  • Helium has a density of 1.79 x 10-4 g/mL at standard temperature and pressure. A balloon has a volume of 6.3 liters. Calculate t
    9·2 answers
  • A force is directly proportional to what ?
    7·1 answer
  • (NO LINKS) A carpenter strikes a nail with a hammer, pushing it into wood.
    15·1 answer
  • Explain why people who use the drug in the following scenario might have potential health risks.
    5·2 answers
  • In an experiment in which molten naphthalene is allowed to cool, the cooling curve shown below was obtained, the temperature 80∘
    8·1 answer
  • Which atmospheric gas is used by plants and given off by animals? A. Carbon dioxide. B. Nitrogen C. Oxygen D. Argon​
    12·2 answers
  • During sublimation the particles in a solid?
    7·1 answer
  • How does the force block A exerts on block B compare to the force block B exerts on block A?
    11·1 answer
  • How does a single fix pully help you do work
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!