Answer:
The vertical distance is ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Explanation:
From the question we are told that
The mass of the cylinder is m
The kinetic frictional force is f
Generally from the work energy theorem

Here E the the energy of the spring which is increasing and this is mathematically represented as

Here k is the spring constant
P is the potential energy of the cylinder which is mathematically represented as

And
is the workdone by friction which is mathematically represented as

So

=> ![\frac{1}{2} * k * d^2 = d[mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%5E2%20%3D%20%20d%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![\frac{1}{2} * k * d = [mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%20%3D%20%20%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Resistors Working Together.
Resistors are shown coupled in parallel to a voltage source in Figure 10.3.4. When all of the resistors' ends are connected to one another by a continuous wire of minimal resistance and their other ends are also connected to one another by a continuous wire of minimal resistance, the resistors are said to be in parallel. There is a constant potential drop across all resistors. Ohm's law, I=V/R, can be used to determine the current flowing through each resistor while the voltage is constant across each resistor. For instance, the headlights, radio, and other components of an automobile are linked in parallel so that each subsystem can use the entire voltage of the source and function independently. The wiring in your home or any other structure shares the same
The original circuit is shown in part a with two parallel resistors linked to a voltage source, and the equivalent circuit is shown in part b with one equivalent resistor connected to the voltage source.
learn more about resistors brainly.com/question/22259983
#4159
We will use this equation:
s = 1/2*a*t^2 + v0*t + s0
where:
s = space traveled
a = acceleration
t = time
v0 = initial speed
s0 = initial space
In this case::
v0 = 0
s0 = 0
So our equation will look like that now:
s = 1/2 * a * t^2
let's calculate the acceleration first of all:
a = (vf - vi) / t
where vf is the final speed and vi is the initial speed. t is the time.
a = (25m/s) / 10s = 2.5 m/s^2
Now we can calculate the space:
s = 1/2 * (2.5 m/s^2) * (10s)^2 = 125m
---
Hope it was helpful! Have a great day.
Answer:
The cornea of an eye is avascular
Explanation:
The healing process in case of a cornea transplant is slow, because the cornea is of an eye is avascular, i.e., it does not contain blood vessels and in the absence of the blood vessels in the cornea tissue the nutrients and oxygen is not able to get delivered there.
Thus the immune system, without the blood vessels in the cornea is weak and hence healing takes time in case of cornea transplant.