The mass number = protons + neutrons. Bromine has a mass number of 80<span> and 35 protons so </span>80<span>-35 = </span>45<span> neutrons. b) How many electrons does the neutral atom of bromine have? The neutral atom of bromine has 35 electrons because the number of electrons equals the number of protons.</span>
Answer:
Beta emission
Explanation:
In beta emission, a neutron is converted into a proton thereby emitting an electron and a neutrino. A neutrino is a particle that serves to balance the spins.
When a nucleus undergoes beta emission, the mass number of the parent and daughter nuclei remain the same while the atomic number of the daughter nucleus is greater than that of its parent by one unit.
Hence, in beta emission, the daughter nucleus is found one pace to the right of the parent in the periodic table.
Answer:
1.58x10⁻⁵
2.51x10⁻⁸
0.0126
63.10
Explanation:
Phenolphthalein acts like a weak acid, so in aqueous solution, it has an acid form HIn, and the conjugate base In-, and the pH of it can be calculated by the Handerson-Halsebach equation:
pH = pKa + log[In-]/[HIn]
pKa = -logKa, and Ka is the equilibrium constant of the dissociation of the acid. [X] is the concentrantion of X. Thus,
i) pH = 4.9
4.9 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = - 4.8
[In-]/[HIn] = 
[In-]/[HIn] = 1.58x10⁻⁵
ii) pH = 2.1
2.1 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -7.6
[In-]/[HIn] = 
[In-]/[HIn] = 2.51x10⁻⁸
iii) pH = 7.8
7.8 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -1.9
[In-]/[HIn] = 
[In-]/[HIn] = 0.0126
iv) pH = 11.5
11.5 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = 1.8
[In-]/[HIn] = 
[In-]/[HIn] = 63.10
<u>Answer:</u> The mass of nitrogen gas reacted to produce given amount of energy is 5.99 grams.
<u>Explanation:</u>
The given chemical reaction follows:

We know that:
Molar mass of nitrogen gas = 28 g/mol
We are given:
Enthalpy change of the reaction = 14.2 kJ
To calculate the mass of nitrogen gas reacted, we use unitary method:
When enthalpy change of the reaction is 66.4 kJ, the mass of nitrogen gas reacted is 28 grams.
So, when enthalpy change of the reaction is 14.2 kJ, the mass of nitrogen gas reacted will be = 
Hence, the mass of nitrogen gas reacted to produce given amount of energy is 5.99 grams.
Answer:
See the answer below
Explanation:
<em>First, it should be understood that an endothermic reaction is one that absorbs energy in the form of heat from the surrounding.</em> The products of endothermic reactions usually have higher energy than their reactants. Hence, the ΔH° which is referred to as the enthalpy change is usually positive.
<u>Forgetting to cover the coffee-cup calorimeter means some of the heat energy absorbed by the reactants would be exchanged back to the surroundings - a loss.</u> It also means that the enthalpy change would be smaller compared to if the cup had been covered because some of the heat has been lost to the surrounding.