It reaches 10 or 20 million degrees kelvin but it can get as high as 10 million degrees kelvin
Wood isn't as tough as rock. Wood also breaks down in weather and cracks under pressure. Plus rocks were more accessible.
Answer:
129 J/Kg°C
Explanation:
Given :
Mass of gold, m = 1.2kg
Quantity of heat applied, Q = 3096 J
Temperature, t2 = 40°C
Temperature, t1 = 20°C
Change in temperature, dt = (40-20)°C = 20°C
Using the relation :
Q = mcdt
Where, C = specific heat capacity of gold
3096 = 1.2kg * C * 20°C
3096 J = 24kg°C * C
C = 3096 J / 24 kg°C
C = 129 J/Kg°C
600Hz is the driving frequency needed to create a standing wave with five equal segments.
To find the answer, we have to know about the fundamental frequency.
<h3>How to find the driving frequency?</h3>
- The following expression can be used to relate the fundamental frequency to the driving frequency;
f(n) = n * f (1)
where, f(1) denotes the fundamental frequency and the driving frequency f(n).
- The standing wave has four equal segments, hence with n=4 and f(n)=4, we may calculate the fundamental frequency.
f(4) = 4× f (1)
480 = 4× f(1)
f(1) = 480/4 =120Hz.
So, 120Hz is the fundamental frequency.
- To determine the driving frequency necessary to create a standing wave with five equally spaced peaks?
- For, n = 5,
f(n) = n 120Hz,
f(5) = 5×120Hz=600Hz.
Consequently, 600Hz is the driving frequency needed to create a standing wave with five equal segments.
Learn more about the fundamental frequency here:
brainly.com/question/2288944
#SPJ4