We have to use the equation speed=distance/time.
We want the average speed in second so we have to change the minutes into seconds. We can do this by multiplying the minutes by 60 (60seconds in 1 minute). 60x1.4= 84 seconds.
Speed=distance/time, distance is 82 and time is 84 so speed=82/84
Average speed = 0.98ms^-1 (2dp)
<span>5 electrons because first shell can only have two electrons and second can hold up until 8</span>
Considering the Coulomb's Law, the magnitude of the Coulomb force is 3.1865 N.
<h3>Coulomb's Law</h3>
Charged bodies experience a force of attraction or repulsion on approach.
From Coulomb's Law it is possible to predict what the electrostatic force of attraction or repulsion between two particles will be according to their electric charge and the distance between them.
From Coulomb's Law, the electric force with which two point charges at rest attract or repel each other is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

where:
- F is the electrical force of attraction or repulsion. It is measured in Newtons (N).
- Q and q are the values of the two point charges. They are measured in Coulombs (C).
- d is the value of the distance that separates them. It is measured in meters (m).
- K is a constant of proportionality called the Coulomb's law constant. It depends on the medium in which the charges are located. Specifically for vacuum k is approximately 9×10⁹
.
The force is attractive if the charges are of opposite sign and repulsive if they are of the same sign.
<h3>This case</h3>
In this case, you know that:
- The two uncharged sphere are separated by the distance of d= 3.50 m
- The number of electrons are 1.30×10¹².
- Electrons is elementary charge and charges on both the sphere is same. The value of electron is 1.602×10⁻¹⁹ C. This is, Q=q=1.30×10¹²×1.602×10⁻¹⁹ C= 2.0826×10⁻⁷ C
Replacing in Coulomb's Law:

Solving:
<u><em>F= 3.1865 N</em></u>
Finally, the magnitude of the Coulomb force is 3.1865 N.
Learn more about Coulomb's Law:
brainly.com/question/26892767
#SPJ1
mass times specific heat times tem change.
57 x sh x (30-11)
convert to mks and look up sh iron
Answer:
<em>The second particle will move through the field with a radius greater that the radius of the first particle</em>
Explanation:
For a charged particle, the force on the particle is given as

also recall that work is force times the distance traveled
work = F x d
so, the work on the particle = F x d,
where the distance traveled by the particle in one revolution = 
Work on a particle = 2πrF = 
This work is proportional to the energy of the particle.
And the work is also proportional to the radius of travel of the particles.
Since the second particle has a bigger speed v, when compared to the speed of the first particle, then, the the second particle has more energy, and thus will move through the field with a radius greater that the radius of the first particle.