Do you see that blank, open space after the word "potential ..." ?
There's supposed to be a number there that actually tells us the value of the potential. Without that number ... and a lot more description of the whole scenario here ... there's no possible answer to the question.
Answer:
Air at higher altitude is under less pressure than air at lower altitude because there is less weight of air above it, so it expands (and cools), while air at lower altitude is under more pressure so it contracts (and heats up).
Explanation:
Hope that helped
This question involves the concepts of density, volume, and mass.
The approximate diameter of a magnesium atom is "3.55 x 10⁻¹⁰ m".
<h3>STEP 1 (FINDING MASS OF INDIVIDUAL ATOM)</h3>
It is given that:
Mass of one mole = 24 grams
Mass of 6 x 10²³ atoms = 24 grams
Mass of 1 atom = = 4 x 10⁻²³ grams
<h3>STEP 2 (FINDING VOLUME OF A SINGLE ATOM)</h3>
where,
- = density = 1.7 grams/cm³
- m = mass of single atom = 4 x 10⁻²³ grams
- V = volume of single atom = ?
Therefore,
V = 2.35 x 10⁻²³ cm³
<h3>STEP 3 (FINDING DIAMETER OF ATOM)</h3>
The atom is in a spherical shape. Hence, its Volume can be given as follows:
d = 0.355 x 10⁻⁷ cm = 3.55 x 10⁻¹⁰ m
Learn more about density here:
brainly.com/question/952755
D.to bring light together
The correct answer to the question is : B) The weight of the water, and C) The height of the water.
EXPLANATION :
Before coming into any conclusion, first we have to understand potential energy of a body.
The potential energy of a body due to its position from ground is known as gravitational potential energy.
The gravitational potential energy is calculated as -
Potential energy P.E = mgh
Here, m is the mass of the body, and g is the acceleration due to gravity.
h stands for the height of the body from the ground.
We know that weight of a body is equal to the product of mass with acceleration due to gravity.
Hence, weight W = mg
Hence, potential energy is written as P.E = weight × height.
Hence, potential energy depends on the weight and height of the water.