This question involves the concepts of orbital velocity and orbital radius.
The orbital velocity of ISS must be "7660.25 m/s".
The orbital velocity of the ISS can be given by the following formula:
where,
v = orbital velocity = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of Earth = 5.97 x 10²⁴ kg
R = orbital radius = radius of earth + altitude = 63.78 x 10⁵ m + 4.08 x 10⁵ m
R = 67.86 x 10⁵ m
Therefore,
<u>v = 7660.25 m/s</u>
Learn more about orbital velocity here:
brainly.com/question/541239
Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s
That's false.
The definition of momentum is (mass) x (speed), so they must be multiplied.
"20,000 kg-m/s" has the correct units resulting from multiplication, but the number could only be the result of division.
1. he traveled a total of 24 miles
2. peter is not moving between 10 and 30 minutes