Answer:
Metals at the top
nonmetals at the bottom
metalloids in the middle
Don't quote me, i could be wrong. i think this is the correct order.
Explanation:
protons and electrons are both always the atomic number which is 9 in this case.
For neutrons you subtract the atomic number (9) from the weight of the atom (18.998) some teachers will want you to round to the nearest whole (19). We do this because the number of protons is the atomic number so if you subtract the protons from the whole weight of the atom you would have the electrons and neutrons left. Since electrons weigh so little we don't have to subtract them. Weighing neutrons and electrons would be like weighing an elephant (neutrons) and then putting one marshmallow on the scale (electron).
Answer:
Ea= -175.45J
A= 3.5×10^14
k=3.64 ×10^14 s^2.
Explanation:
From
ln k= -(Ea/R) (1/T) + ln A
This is similar to the equation of a straight line:
y= mx + c
Where m= -(Ea/R)
c= ln A
y= ln k
a)
Therefore
21.10 3 104= -(Ea/8.314)
Ea=-( 21.10 3 104×8.314)
Ea= -175.45J
b) ln A= 33.5
A= e^33.5
A= 3.5×10^14
c)
k= Ae^-Ea/RT
k= 3.5×10^14 × e^ -(-175.45/8.314×531)
k = 3.64 ×10^14 s^2.
D) <span> Electrical energy accelerates the electrons in the neon gas. The gas ionizes and becomes plasma, containing both positive and negative ions.</span>
Answer:
number of moles = 6.393 moles
Explanation:
One mole of any substance contains Avogadro's number (6.022 * 10^23) of atoms.
Therefore, to know the number of moles that contain 3.85 * 10^24 atoms, all we have to do is cross multiplication as follows:
1 mole ......................> 6.022 * 10^23
?? moles ..................> 3.85 * 10^24
number of moles = (3.85 * 10^24 *1) / (6.022 * 10^23)
number of moles = 6.393 moles
Hope this helps :)